Microencapsulación de compuestos bioactivos de flor de jamaica en suero de leche y su aplicación en yogurt

Autores/as

  • SUSANA ELIZABETH ALTAMIRANO ROMO TECNOLOGICO NACIONAL DE MEXICO CAMPUS ROQUE
  • ERIKA LÓPEZ ZAVALA TECNOLOGICO NACIONAL DE MEXICO CAMPUS ROQUE
  • DIANA MINERVA GUERRA PEREZ TECNOLOGICO NACIONAL DE MEXICO CAMPUS ROQUE
  • MARCELO GARRIDO TORRES TECNOLÓGICO NACIONAL DE MÉXICO CAMPUS ZITÁCUARO
  • JORGE GUTIERREZ-TLAHQUE Instituto Tecnológico de Roque

DOI:

https://doi.org/10.29105/idcyta.v9i1.122

Palabras clave:

Compuestos fenólicos, Antioxidantes, Secado por Aspersión, Hibiscus sabdariffa L, Alimentos funcionales

Resumen

El presente trabajo tiene el objetivo en extraer compuestos bioactivos como los fenoles provenientes de la flor de la jamaica para elaborar microcápsulas utilizando maltodextrina, caseinato de sodio y suero de leche como materiales de pared en diferentes concentraciones y aplicarlas en un yogurt para evaluar la estabilidad de los microencapsulados dentro una matriz alimentaria. Los tratamientos que se aplicaron al yogurt fueron las distintitas microcápsulas que a continuación se describen: T1: Yogurt natural sin micocápsulas, T2: Yogurt natural con extracto de flor de jamaica encapsulado con suero de leche, T3: Yogurt natural con extracto de flor de jamaica encapsulado con suero de leche y 10% solidos de maltodextrina. T4: Extracto de flor de jamaica encapsulado con suero de leche y 10% solidos de caseinato de sodio. Donde las variables de respuesta analizadas fueron: Contenido de fenoles totales, actividad antioxidante para el radical ABTS y DPPH; así mismo se realizó una prueba sensorial de nivel de agrado orientada a consumidores. El contenido total de fenoles y la actividad antioxidante de los extractos mostró que el mejor tratamiento para conservar los compuestos fenólicos de la flor de jamaica fue el T2, mismo que presento la mayor aceptación por parte del consumidor para los atributos sabor, color, aroma y textura. Por lo que la aplicación de suero de leche como material encapsulante para elaborar microcápsulas de extractos de flor de jamaica para aplicarlos en una matriz alimenticia resulta una opción viable para elaborar alimentos funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., & Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139-152. DOI: https://doi.org/10.1016/j.foodhyd.2016.01.020

Borrás-Linares, I., Fernández-Arroyo, S., Arráez-Roman, D., Palmeros-Suárez, P. A., Del Val-Díaz, R., Andrade-Gonzáles, I., & Segura-Carretero, A. (2015). Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 69, 385-394. DOI: https://doi.org/10.1016/j.indcrop.2015.02.053

Bors, W., Michel, C., & Schikora, S. (1995). Interaction of flavonoids with ascorbate and determination of their univalent redox potentials: A pulse radiolysis study. Free Radical Biology and Medicine, 19(1), 45-52. DOI: https://doi.org/10.1016/0891-5849(95)00011-L

Brand-Williams, W. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Bugall, A. R. (2011). Evaluación de la actividad antioxidante de extractos de cuatro frutos de interés comercial en Colombia y actividad citotóxica in vitro en la línea celular de fibrosarcoma HT1080. Tesis de Posgrado. Bogotá, Colombia.

Cerdá-Bernad, D., Valero-Cases, E., Pastor, J. J., & Frutos, M. J. (2023). Microencapsulated saffron floral waste extracts as functional ingredients for antioxidant fortification of yogurt: Stability during the storage. LWT-Food Science Technology, 183, 114976. DOI: https://doi.org/10.1016/j.lwt.2023.114976

Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2015). Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Research International, 76, 761-768. DOI: https://doi.org/10.1016/j.foodres.2015.07.003

Coïsson, J., Travaglia, F., G.Piana, Capasso, M., & Arlorioa, M. (2005). Euterpe oleracea juice as a functional pigment for yogurt. Food Research International, 38, 893-897. DOI: https://doi.org/10.1016/j.foodres.2005.03.009

Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2019). Advances in the application of microcapsules as carriers of functional compounds for food products. Applied Sciences, 9(3), 571. DOI: https://doi.org/10.3390/app9030571

De Moura, S. C. S. R., Schettini, G. N., Gallina, D. A., Dutra Alvim, I., & Hubinger, M. D. (2022). Microencapsulation of hibiscus bioactives and its application in yogurt. Journal of Food Processing and Preservation, 46(4), e16468. DOI: https://doi.org/10.1111/jfpp.16468

De Moura, S. C., Schettini, G. N., Garcia, A. O., Gallina, D. A., Alvim, I. D., & Hubinger, M. D. (2019). Stability of hibiscus extract encapsulated by ionic gelation incorporated in yogurt. Food and Bioprocess Technology, 12, 1500-1515. DOI: https://doi.org/10.1007/s11947-019-02308-9

Flores-Mancha, M. A., Ruíz-Gutiérrez, M. G., Sánchez-Vega, R., Santellano-Estrada, E., & Chávez-Martínez, A. (2021). Effect of encapsulated beet extracts (Beta vulgaris) added to yogurt on the physicochemical characteristics and antioxidant activity. Molecules, 26(16), 4768. DOI: https://doi.org/10.3390/molecules26164768

Garro, A., Cardona, W., Rojano, B., Robledo, S., & Alzate, F. (2015). Actividad antioxidante y citotóxica de extractos de Pilea dauciodora Wedd (Urticaceae). Revista Cubana de Plantas Medicinales, (1), 88-97.

Georgé, S. (2005). Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. Journal of Agricultural and Food Chemistry, 1370-1373. DOI: https://doi.org/10.1021/jf048396b

Grażyna, C., Hanna, C., Adam, A., & Magdalena, B. M. (2017). Natural antioxidants in milk and dairy products. International Journal of Dairy Technology, 70(2), 165-178. DOI: https://doi.org/10.1111/1471-0307.12359

Huck-Iriart, C., Rincón Cardona, J. A., Montes de Oca Avalos, J. M., & Candal, R. J. (2014). Gelificación de emulsiones de caseinato de sodio como alternativa a las grasas trans. Ciencia e Investigación, 5-16.

Jabeur, I., Pereira, E., Barros, L., Calhelha, R. C., Soković, M., Oliveira, M. B. P., & Ferreira, I. C. (2017). Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Research International, 100, 717-723. DOI: https://doi.org/10.1016/j.foodres.2017.07.073

Jing, P., & Giusti, M. M. (2005). Characterization of anthocyanin-rich waste from purple corncobs (Zea mays L.) and its application to color milk. Journal of Agricultural and Food Chemistry, 53(22), 8775-8781. DOI: https://doi.org/10.1021/jf051247o

Kudoh, Y., Matsuda, S., Igoshi, K., & Oki, T. (2001). Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. Nippon Shokuhin Kagaku Kogaku Kaishi, 48(1), 44-50. DOI: https://doi.org/10.3136/nskkk.48.44

Naddaf, L. (2012). Secado por aspersión de jugo natural de naranja utilizando los encapsulantes maltodextrina y goma arábiga. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 35(1), 020-027.

Oancea, A.-M., & Hasan, M. (2018). Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT - Food Science and Technology, 129-134. DOI: https://doi.org/10.1016/j.lwt.2018.04.083

Oliveira, A., Alexandre, E. M., Coelho, M., Lopes, C., Almeida, D. P., & Pintado, M. (2015). Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins. Food Chemistry, 171, 370-378. DOI: https://doi.org/10.1016/j.foodchem.2014.08.107

Pinoargote, P. A. (Noviembre de 2021). Efecto del uso de edulcorantes y cúrcuma en propiedades fisicoquímicas y sensoriales del yogur natural. Trabajo de Tesis. Honduras.

Pires, T. C., Barros, L., Santos-Buelga, C., & Ferreira, I. C. (2019). Edible flowers: Emerging components in the diet. Trends in Food Science & Technology, 93, 244-258. DOI: https://doi.org/10.1016/j.tifs.2019.09.020

Premi, M., & Sharma, H. (2017). Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological, 105, 1232-1240. DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.160

Pudziuvelyte, L., Marksa, M., Jakstas, V., Ivanauskas, L., Kopustinskiene, D. M., & Bernatoniene, J. (2019). Microencapsulation of Elsholtzia ciliata herb ethanolic extract by spray-drying: impact of resistant-maltodextrin complemented with sodium caseinate, skim milk, and beta-cyclodextrin on the quality of spray-dried powders. Molecules, 24(8), 1461. DOI: https://doi.org/10.3390/molecules24081461

Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258. DOI: https://doi.org/10.1080/07373937.2019.1653906

Ribeiro, A. M., Shahgol, M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocolloids, 108, 106029. DOI: https://doi.org/10.1016/j.foodhyd.2020.106029

Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386-1394. DOI: https://doi.org/10.1111/j.1365-2621.2010.02270.x

Roos, Y. (1995). Characterization of food polymers using state diagrams. Journal of Food Engineering, 24(3), 339-360. DOI: https://doi.org/10.1016/0260-8774(95)90050-L

Salah, N., Miller, N., Paganga, G., Tijburg, L., Bolwell, G., & Rice-Evans, C. (1995). Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of biochemistry and biophysics, 322(2), 339-346. DOI: https://doi.org/10.1006/abbi.1995.1473

Schlossareck, C., & Ross, C. F. (2020). Consumer sensory evaluation of aftertaste intensity and liking of spicy paneer cheese. International Journal of Food Science & Technology, 55(7), 2710-2718. DOI: https://doi.org/10.1111/ijfs.14524

Silva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., Alves, M. J., Calhelha, R. C., & Barreiro, M. F. (2019). Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 60, 103427. DOI: https://doi.org/10.1016/j.jff.2019.103427

Van den Berg, H. (1999). Application of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity of measurement of mixture. Journal of Agricultural and Food, 511-517. DOI: https://doi.org/10.1016/S0308-8146(99)00089-8

Wallace, T., & Giusti, M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4), 241-248. DOI: https://doi.org/10.1111/j.1750-3841.2008.00706.x

Zabaleta, K. (2013). Elaboración de un yogur estandarizado con añadidos de Hibiscus Sabdariffa (Flor de Jamaica). Trabajo de tesis. Cartagena de Indias.

Zhao, C., & Ashaolu, T. J. (2020). Bioactivity and safety of whey peptides, LWT: Food Science and Technology, 134, 109935. DOI: https://doi.org/10.1016/j.lwt.2020.109935

Descargas

Publicado

2024-03-19

Cómo citar

ALTAMIRANO ROMO, S. E., LÓPEZ ZAVALA, E., GUERRA PEREZ, D. M., GARRIDO TORRES, M., & GUTIERREZ-TLAHQUE, J. (2024). Microencapsulación de compuestos bioactivos de flor de jamaica en suero de leche y su aplicación en yogurt. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 9(1), 43–52. https://doi.org/10.29105/idcyta.v9i1.122