Obtención de aislados e hidrolizados proteicos de grillo (Acheta domesticus) y evaluación de su actividad antioxidante

Autores/as

  • M.L. Sosa-Flores Universidad Autónoma de Nuevo León
  • D.G. García-Hernández Universidad Autónoma de Nuevo León
  • C.A. Amaya-Guerra Universidad Autónoma de Nuevo León
  • M. Bautista-Villarreal Universidad Autónoma de Nuevo León
  • A.R. González-Luna Universidad Autónoma de Nuevo León https://orcid.org/0000-0002-1943-5181

DOI:

https://doi.org/10.29105/idcyta.v8i1.81

Palabras clave:

Aislado proteico, hidrolizado, solubilidad de proteínas, actividad antioxidante, grillo común

Resumen

La harina desengrasada de A. domesticus posee una concentración proteica del 61.3%. Se evaluó la concentración proteica de los aislados proteicos de A. domesticus utilizando el método de Kjeldahl, obteniendo como resultado un 71.7% de proteínas. Los hidrolizados proteicos de A. domesticus se obtuvieron utilizando la enzima Alcalasa a 0.22 UA/g obteniendo un contenido proteico de 57.97 mg/mL. Para evaluar la actividad antioxidante se realizó el ensayo que evalúa la capacidad para secuestrar el radical DPPH de acuerdo con la metodología descrita por Gómez et al., (2013), por espectrofotometría a 517 nm, empleando un lector de microplacas de 96 pocillos; se evaluaron los hidrolizados proteicos en los tiempos 0, 15, 30, 45, y 60 minutos, utilizando distintas concentraciones proteicas (1, 2, 3, 4, y 5 mg/mL), así como una prueba para el control positivo con Trolox a distintas concentraciones (100, 200, 300, 400 y 500 µg/mL). La actividad antioxidante se observó levemente favorecida con un 31 al 52% de inhibición para el tiempo 0 (min) y 14 al 38% para el tiempo 15 (min), esto en comparación con el control positivo Trollox el cual tuvo un porcentaje de inhibición mayor al 80%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adeyeye, E., & Awokunmi, E. (2010). Chemical composition of female and male giant African crickets, Brachytrypes membranaceus L.. International Journal of Pharma and Bio Sciences, 1(4), 125–136.

Ahn C, Kim J, Je J, Yin J., (2014), Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem., 147, 78–83 DOI: https://doi.org/10.1016/j.foodchem.2013.09.136

Brogan, E. N. (2018). Protein and Lipid Characterization of Acheta domesticus, Bombyx Protein and Lipid Characterization of Acheta domesticus, Bombyx mori, and Locusta migratoria Dry Flours mori, and Locusta migratoria Dry Flours. 57. https://researchrepository.wvu.edu/etd/7498

Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., and Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2, e00218 DOI: https://doi.org/10.1016/j.heliyon.2016.e00218

Castro R, Ohara A, Aguilar J, dos S & Domingues M, (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science and Technology, 76(March), 82–89. https://doi.org/10.1016/j.tifs.2018.04.006 DOI: https://doi.org/10.1016/j.tifs.2018.04.006

Chalamaiah M, Rao G, Rao D, Jyothirmayi T, (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120(3), 652–657. DOI: https://doi.org/10.1016/j.foodchem.2009.10.057

Finke M, (2007) Estimate of chitin in raw whole insects. Zoo Biol. 26, 93–104. https ://doi.org/10.1002/zoo. DOI: https://doi.org/10.1002/zoo.20122

Finke M, (2002), Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 21, 269–285. https ://doi.org/10.1002/zoo.10031 DOI: https://doi.org/10.1002/zoo.10031

Foo, C., Bini, E., Hensman, J., Knight, D., Lewis, R., and Kaplan, D. (2006). Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A., 82, 223‒233 DOI: https://doi.org/10.1007/s00339-005-3426-7

Ghribi A, Gafsi, I, Sila A, Blecker C, Danthine S, Attia H, Besbes, S. (2015). Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chemistry, 187, 322–330. DOI: https://doi.org/10.1016/j.foodchem.2015.04.109

Gómez, Leidy J, Figueroa, Omar A, & Zapata, José E. (2013). Actividad Antioxidante de Hidrolizados Enzimáticos de Plasma Bovino Obtenidos por Efecto de Alcalasa® 2.4 L. Información tecnológica, 24(1), 33-42. https://dx.doi.org/10.4067/S0718-07642013000100005 DOI: https://doi.org/10.4067/S0718-07642013000100005

Gresiana, F., Muzi Marpaung, A., & Sutanto, H. (2015). Protein isolation from cricket (Gryllusmitratus). Proceedings of the International Conference on Innovation, Entrepreneurship and Technology, November 2015, 214–221.

Hall F, Jones O, O’Haire M, & Liceaga A. (2017). Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chemistry, 224, 414–422. DOI: https://doi.org/10.1016/j.foodchem.2016.11.138

Jayasena V, Chih H, Nasar-Abbas S., (2010) Functional properties of sweet lupin protein isolated and tested at various pH levels Res. J. Agric. Biol. Sci. 6, 130–137

Kim H, Setyabrata D, Lee Y, Jones O, Kim Y, (2017) Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formu- lations. Journal of Food Science 82: 2787-2793 DOI: https://doi.org/10.1111/1750-3841.13960

Lee J, Koo N, Min DB, (2021) Reactive oxygen species, aging, and antioxidative nutraceuticals, Compilation Food Science Saf; 3:21-33 DOI: https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

L’hocine, L., Boye, J. I., & Arcand, Y. (2006). Food Chemistry and Toxicology Composition and Functional Properties of Soy Protein Isolates Prepared Using Alternative Defatting and Extraction Procedures. Food Chemistry and Toxicology, 71(3), C137–C145. DOI: https://doi.org/10.1111/j.1365-2621.2006.tb15609.x

Mackie K., Brownell H., West K., & Saddler J., (1985) Effect of Sulphur Dioxide and Sulphuric Acid on Steam Explosion of Aspenwood, Journal of Wood Chemistry and Technology, 5:3, 405-425, DOI: 10.1080/02773818508085202 DOI: https://doi.org/10.1080/02773818508085202

Messina CM, Gaglio R, Morghese M, Tolone M, Arena R, Moschetti G, Santulli A, Francesca N, Settanni L. (2019) Microbiological profile and bioactive properties of insect powders used in food and feed formulations. Foods 8: 400 DOI: https://doi.org/10.3390/foods8090400

Ndiritu A, Kinyuru J, Gichuhi N & Kenji G, (2019). Effects of NaCl and pH on the functional properties of edible crickets (Acheta domesticus) protein concentrate. Journal of Food Measurement and Characterization, 13(3), 1788–1796. https://doi.org/10.1007/s11694-019-00097-5 DOI: https://doi.org/10.1007/s11694-019-00097-5

Picot, L.; Ravallec, R.; Fouchereau-Péron, M.; Vandanjon, L.; Jaouen, P.; Chaplain-Derouiniot, M.; Guérard, F.; Chabeaud, A.; LeGal, Y.; Alvarez, O.M.; 2010, Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agric. 90, 1819–1826 DOI: https://doi.org/10.1002/jsfa.4020

Ribeiro, J. C., Lima, R. C., Maia, M. R. G., Almeida, A. A., Fonseca, A. J. M., Cabrita, A. R. J., & Cunha, L. M. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. Lwt, 113(May), 10833530(8), 1003–1023. DOI: https://doi.org/10.1016/j.lwt.2019.108335

Raghavan, S.; Kristinsson, H.G. 2008 Antioxidative Efficacy of Alkali-Treated Tilapia Protein Hydrolysates: A Comparative Study of Five Enzymes. J. Agric. Food Chem. 56, 1434–1441. [CrossRef] DOI: https://doi.org/10.1021/jf0733160

Rumpold B, & Schlüter O. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57(5), 802–823 DOI: https://doi.org/10.1002/mnfr.201200735

Sirimungkarat S, Saksirirat W, Nopparat T, Natongkham A, Durst P, Johnson D, Leslie R, Shono K, (2010) Forest Insects as Food: Humans Bite Back, FAO, Bankok, Thailand, pp 189-200

Taheri, A.; Sabeena Farvin, K.H.; Jacobsen, C.; Baron, C.P., 2014, Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chem. 142, 318–326. DOI: https://doi.org/10.1016/j.foodchem.2013.06.113

Thiansilakul, Y.; Benjakul, S.; Shahidi, F. 2007, Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem., 103, 1385–1394 DOI: https://doi.org/10.1016/j.foodchem.2006.10.055

Udomsil, N., Imsoonthornruksa, S., Gosalawit, C., & Ketudat-Cairns, M. (2019). Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Science and Technology Research, 25(4), 597–605. https://doi.org/10.3136/fstr.25.597 DOI: https://doi.org/10.3136/fstr.25.597

Vioque J, Sánchez-Vioque R, Pedroche J, Del Mar M, Millán F, (2001), Obtención y aplicaciones de concentrados y aislados proteicos, Instituto de la Grasa, Grasas y Aceites Vol. 52, 127-131

Yi, L., Lakemond, C., Sagis, L., Eisner-Schadler, V., van Huis, A., and van Boekel, M. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chem., 141, 3341‒3348. DOI: https://doi.org/10.1016/j.foodchem.2013.05.115

Zhao, X., Vázquez-Gutiérrez, J. L., Johansson, D. P., Landberg, R., and Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11, e0147791 DOI: https://doi.org/10.1371/journal.pone.0147791

Descargas

Publicado

2023-07-17

Cómo citar

Sosa-Flores, M. ., García-Hernández, D. ., Amaya-Guerra, C. ., Bautista-Villarreal, M. ., & González-Luna, A. . (2023). Obtención de aislados e hidrolizados proteicos de grillo (Acheta domesticus) y evaluación de su actividad antioxidante. Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 608–618. https://doi.org/10.29105/idcyta.v8i1.81