Determinación de actividad antioxidante en alimentos funcionales

Autores/as

  • E.L. Dorantes-Salazar Universidad Autónoma de Nuevo León
  • J.G. Báez-González Universidad Autónoma de Nuevo León
  • É. Gastelúm-Martínez Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C
  • J.L. Morales-Landa Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C
  • E. García-Marquez Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C

DOI:

https://doi.org/10.29105/idcyta.v8i1.84

Palabras clave:

Radicales libres, antioxidantes, alimentos

Resumen

Los alimentos funcionales son aquellos a los que se les ha adicionado compuestos bioactivos con el objetivo de cumplir una función específica en el organismo. Entre la gran variedad de compuestos bioactivos que pueden ser adicionados se encuentran los compuestos antioxidantes, los cuales tienen la función de inhibir los radicales libres presentes en el organismo, responsables de causar daños en los lípidos de la membrana celular y en el DNA, que propicia diversas enfermedades crónico degenerativas. Es por esto que resulta de vital importancia conocer las metodologías disponibles para la determinación de actividad antioxidante en alimentos funcionales. Gran parte de los métodos reportados en la literatura hacen uso de técnicas espectrofotométricas a través de mecanismos HAT y SET. Entre ellas se pueden destacar las metodologías de DPPH, ABTS, FRAP, TPC y TFC. No se suele hacer uso de metodologías oficiales debido a que no cuantifican en su totalidad los compuestos antioxidantes presentes, su complejidad o el gran volumen de reactivos empleado. Por lo tanto, la gran mayoría de publicaciones científicas hacen uso de metodologías publicadas en artículos científicos. Adicionalmente, los métodos se ven afectados por distintas sustancias presentes en la matriz, que causan interferencia e incertidumbre en los resultados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adwas, A.; Elsayed, A.; Azab, A. & Quwaydir, F. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology & Bioengineering, 6(1), 43–47. https://doi.org/10.15406/jabb.2019.06.00173 DOI: https://doi.org/10.15406/jabb.2019.06.00173

Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.; Bektaşoğlu, B.; Berker, B. & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547. DOI: https://doi.org/10.3390/12071496

Balestra, F., Cocci, E., Pinnavaia, G. G., & Romani, S. (2011). Evaluation of antioxidant, rheological and sensorial properties of wheat flour dough and bread containing ginger powder. LWT - Food Science and Technology, 44(3), 700–705. https://doi.org/10.1016/j.lwt.2010.10.017 DOI: https://doi.org/10.1016/j.lwt.2010.10.017

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76. DOI: https://doi.org/10.1006/abio.1996.0292

Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Coïsson, J. D., Travaglia, F., Piana, G., Capasso, M., & Arlorio, M. (2005). Euterpe oleracea juice as a functional pigment for yogurt. Food Research International, 38(8–9), 893–897. https://doi.org/10.1016/j.foodres.2005.03.009 DOI: https://doi.org/10.1016/j.foodres.2005.03.009

Chen, L. Y., Cheng, C. W., & Liang, J. Y. (2015). Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food chemistry, 170, 10-15. DOI: https://doi.org/10.1016/j.foodchem.2014.08.038

Fares, C., Platani, C., Baiano, A., & Menga, V. (2010). Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chemistry, 119(3), 1023–1029. https://doi.org/10.1016/j.foodchem.2009.08.006 DOI: https://doi.org/10.1016/j.foodchem.2009.08.006

Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials, 14(15), 4135. MDPI AG. https://doi.org/10.3390/ma14154135 DOI: https://doi.org/10.3390/ma14154135

Fu, J. T., Chang, Y. H., & Shiau, S. Y. (2015). Rheological, antioxidative and sensory properties of dough and Mantou (steamed bread) enriched with lemon fiber. LWT - Food Science and Technology, 61(1), 56–62. https://doi.org/10.1016/j.lwt.2014.11.034 DOI: https://doi.org/10.1016/j.lwt.2014.11.034

Gawlik-Dziki, U., Świeca, M., Dziki, D., Baraniak, B., Tomiło, J., & Czyz, J. (2013). Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chemistry, 138(2–3), 1621–1628. https://doi.org/10.1016/j.foodchem.2012.09.151 DOI: https://doi.org/10.1016/j.foodchem.2012.09.151

Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Lin, R. (2009). The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT - Food Science and Technology, 42(1), 137–143. https://doi.org/10.1016/j.lwt.2008.06.009 DOI: https://doi.org/10.1016/j.lwt.2008.06.009

Jaster, H., Arend, G. D., Rezzadori, K., Chaves, V. C., Reginatto, F. H., & Petrus, J. C. C. (2018). Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Research International, 104, 119–125. https://doi.org/10.1016/j.foodres.2017.10.006 DOI: https://doi.org/10.1016/j.foodres.2017.10.006

Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018). Determination of total phenolic content using the Folin-C assay: Single-laboratory validation, First action 2017.13. Journal of AOAC International, 101(5), 1466-1472. DOI: https://doi.org/10.5740/jaoacint.18-0031

Mann, B., Kumari, A., Kumar, R., Sharma, R., Prajapati, K., Mahboob, S., & Athira, S. (2015). Antioxidant activity of whey protein hydrolysates in milk beverage system. Journal of Food Science and Technology, 52(6), 3235–3241. https://doi.org/10.1007/s13197-014-1361-3 DOI: https://doi.org/10.1007/s13197-014-1361-3

Matić, P., Sabljić, M., & Jakobek, L. (2017). Validation of spectrophotometric methods for the determination of total polyphenol and total flavonoid content. Journal of AOAC International, 100(6), 1795-1803. DOI: https://doi.org/10.5740/jaoacint.17-0066

Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of chromatography A, 1054(1-2), 95-111. DOI: https://doi.org/10.1016/S0021-9673(04)01409-8

Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151–1157. https://doi.org/10.1021/jf051960d DOI: https://doi.org/10.1021/jf051960d

Pandey, P., Grover, K., Dhillon, T. S., Kaur, A., & Javed, M. (2021). Evaluation of polyphenols enriched dairy products developed by incorporating black carrot (Daucus carota L.) concentrate. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e06880. DOI: https://doi.org/10.1016/j.heliyon.2021.e06880

Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39(7), 791–800. https://doi.org/10.1016/j.foodres.2006.02.003 DOI: https://doi.org/10.1016/j.foodres.2006.02.003

Pérez-Jiménez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European journal of clinical nutrition, 64(3), S112-S120. DOI: https://doi.org/10.1038/ejcn.2010.221

Plank, D. W., Szpylka, J., Sapirstein, H., Woollard, D., Zapf, C. M., Lee, V., ... & Collaborators: Begelman A Camire M DeRito C DeVries JW Dougherty MP Hanson M Liu R Marquard M Ser A Stringer M. (2012). Determination of antioxidant activity in foods and beverages by reaction with 2, 2′-Diphenyl-1-picrylhydrazyl (DPPH): Collaborative study first action 2012.04. Journal of AOAC International, 95(6), 1562-1569. DOI: https://doi.org/10.5740/jaoacint.CS2012_04

Sirivibulkovit, K., Nouanthavong, S., & Sameenoi, Y. (2018). based DPPH assay for antioxidant activity analysis. Analytical sciences, 34(7), 795-800. DOI: https://doi.org/10.2116/analsci.18P014

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144

Świeca, M., Gawlik-Dziki, U., Dziki, D., Baraniak, B., & Czyz, J. (2013). The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chemistry, 141(1), 451–458. https://doi.org/10.1016/j.foodchem.2013.03.048 DOI: https://doi.org/10.1016/j.foodchem.2013.03.048

Tavakoli, H., Hosseini, O., Jafari, S. M., & Katouzian, I. (2018). Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231–9240. https://doi.org/10.1021/acs.jafc.8b02759 DOI: https://doi.org/10.1021/acs.jafc.8b02759

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of food composition and analysis, 19(6-7), 669-675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003

Yadav, A., Kumari, R., Yadav, A., Mishra, J. P., Srivatva, S., & Prabha, S. (2016). Antioxidants and its functions in human body-A Review. Res. Environ. Life Sci, 9(11), 1328-1331.

Zain, M.; Shori, A. & Baba, A. (2022). Potential functional food ingredients in bread and their health benefits. In Biointerface Research in Applied Chemistry, 12(5), 6533–6542. AMG Transcend Association. https://doi.org/10.33263/BRIAC125.65336542 DOI: https://doi.org/10.33263/BRIAC125.65336542

Descargas

Publicado

2023-07-17

Cómo citar

Dorantes-Salazar, E. ., Báez-González, J. ., Gastelúm-Martínez, É. ., Morales-Landa , J. ., & García-Marquez, E. . (2023). Determinación de actividad antioxidante en alimentos funcionales . Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 643–649. https://doi.org/10.29105/idcyta.v8i1.84