Estabilización de antocianinas extraídas de jugo de granada usando arabinoxilanos extraídos de un subproducto de la industria cervecera

Autores/as

  • Y. Jaguey-Hernández Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-3381-0208
  • A. Castañeda-Ovando Universidad Autónoma del Estado de Hidalgo
  • E.P. Castañeda-Ovando Universidad Autónoma del Estado de Hidalgo
  • C. Tapia-Ignacio Universidad Autónoma del Estado de Hidalgo
  • E. Contreras-López Universidad Autónoma del Estado de Hidalgo
  • L.G. Gonzalez-Olivares Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.29105/idcyta.v8i1.95

Palabras clave:

Arabinoxilanos, estabilización de color, granada, antocianinas

Resumen

Actualmente, se busca el empleo de aditivos naturales en los alimentos, incluyendo los colorantes. Las frutas son una importante fuente de colorantes naturales como clorofilas, carotenoides, betalaínas y antocianinas, sin embargo, una de sus mayores limitaciones es su estabilidad. En el presente trabajo se evaluó la adición de una fracción rica en arabinoxilanos obtenida del bagazo de cebada de la industria cervecera (BSG-AX) sobre la estabilidad de antocianinas de jugo de granada (Punica granatum) mediante cinéticas de degradación. Se obtuvieron dos extractos de jugo de granada mediante liofilización, se estimó su contenido de antocianinas con el método de pH diferencial, se realizaron seis formulaciones de bebidas adicionando BSG-AX, evaluando la estabilidad de las antocianinas mediante medición del cambio de color (ΔE) a través de análisis digital. El contenido de antocianinas del extracto de jugo de granada se estimó en 115.66±3.48 mg equivalentes de cianidina-3-glucósido/100 g, las bebidas formuladas se almacenaron a 4ºC por 49 días. Las bebidas adicionadas con BSG-AX presentaron menor cambio de color que las no adicionadas por lo que, se evidencia la utilidad de la BSG-AX como un aditivo alimentario para ser aplicado en la industria de alimentos como un estabilizador de color.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Albuquerque, B. R., Oliveira, M. B. P., Barros, L., & Ferreira, I. C. (2021). Could fruits be a reliable source of food colorants? Pros and cons of these natural additives. Critical Reviews in Food Science and Nutrition, 61(5), 805-835. https://doi.org/10.1080/10408398.2020.1746904 DOI: https://doi.org/10.1080/10408398.2020.1746904

Berns R. S. (2019) Numerical Color Specification: Colorimetry, In: Billmeyer and Saltzman’s Principles of color technology. (pp. 51-84). John Wiley Sons. https://doi.org/10.1002/9781119367314.ch4 DOI: https://doi.org/10.1002/9781119367314.ch4

Castañeda-Ovando, A., Pacheco-Hernández, M. de L., Páez-Hernández, M. E., Rodríguez, J. A., & Galán - Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001 DOI: https://doi.org/10.1016/j.foodchem.2008.09.001

Chen, Z., Li, S., Fu, Y., Li, C., Chen, D., & Chen, H. (2019). Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. Journal of Functional Foods, 54, 536-551. https://doi.org/10.1016/j.jff.2019.02.007 DOI: https://doi.org/10.1016/j.jff.2019.02.007

Cortez, R., Luna-Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180–198. https://doi.org/10.1111/1541-4337.12244 DOI: https://doi.org/10.1111/1541-4337.12244

Erum, A., Bashir, S., Saghir, S., Tulain, U. R., Saleem, U., Nasir, M., Kanwal, F., & Hayat Malik, M. N. (2015). Acute toxicity studies of a novel excipient arabinoxylan isolated from Ispaghula (Plantago ovata) husk. Drug and Chemical Toxicology, 38(3), 300–305. https://doi.org/10.3109/01480545.2014.956219 DOI: https://doi.org/10.3109/01480545.2014.956219

Fang, J. (2014). Bioavailability of anthocyanins. Drug Metabolism Reviews, 46(4), 508–520. https://doi.org/10.3109/03602532.2014.978080 DOI: https://doi.org/10.3109/03602532.2014.978080

Hegazi, N. M., El-Shamy, S., Fahmy, H., & Farag, M. A. (2021). Pomegranate juice as a super-food: A comprehensive review of its extraction, analysis, and quality assessment approaches. Journal of Food Composition and Analysis, 97, 103773. https://doi.org/10.1016/j.jfca.2020.103773 Received 18 August 2020; Received in revised DOI: https://doi.org/10.1016/j.jfca.2020.103773

Jaguey-Hernández, Y., Tapia-Ignacio, C., Aguilar-Arteaga, K., González-Olivares, L. G., Castañeda-Ovando, E. P., Cruz-Cansino, N., Ojeda-Ramirez, D. & Castañeda-Ovando, A. (2022). Thermoplastic biofilms obtained from an arabinoxylan-rich fraction from brewers’ spent grain: physicochemical characterization and thermal analysis. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-021-02288-x DOI: https://doi.org/10.1007/s13399-021-02288-x

Khomich, L. M., Perova, I. B., & Eller, K. I. (2019). Pomegranate juice nutritional profile. Voprosy Pitaniia, 88(5), 80-92. doi: 10.24411/0042-8833-2019-10057

Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269 DOI: https://doi.org/10.1093/jaoac/88.5.1269

Mokrzycki, W. S., & Tatol, M. (2011). Colour difference∆E-A survey. Machine Graphics & Vision International Journal 20(4), 383-411.

Moreirinha, C., Vilela, C., Silva, N. H., Pinto, R. J., Almeida, A., Rocha, M. A. M., Coelho, E., Coimbra, M. A., Silvestre, J. D., & Freire, C. S. (2020). Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids, 108, 105836. https://doi.org/10.1016/j.foodhyd.2020.105836 DOI: https://doi.org/10.1016/j.foodhyd.2020.105836

Nguyen, T. T., Phan-Thi, H., Pham-Hoang, B. N., Ho, P. T., Tran, T. T. T., & Waché, Y. (2018). Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Research International, 107, 275–280. https://doi.org/10.1016/j.foodres.2018.02.044 DOI: https://doi.org/10.1016/j.foodres.2018.02.044

Olaya, C. ., Castaño, M. ., & Garzón, G. . (2009). Stability of anthocyanins from Rubus glaucus and Solanum betaceum cav.dark-red strain as affected by temperature, storage and water activity. Acta Biológica Colombiana, 14(3), 143–158.

Pérez-Flores, J. G., Contreras-López, E., Castañeda-Ovando, A., Pérez-Moreno, F., Aguilar-Arteaga, K., Álvarez-Romero, G. A., & Téllez-Jurado, A. (2019). Physicochemical characterization of an arabinoxylan-rich fraction from brewers' spent grain and its application as a release matrix for caffeine. Food Research International, 116, 1020-1030. https://doi.org/10.1016/j.foodres.2018.09.041 DOI: https://doi.org/10.1016/j.foodres.2018.09.041

Shah, A., Masoodi, F. A., Gani, A., Gani, A., Noor, N., & Fazli, A. (2021). Arabinoxylans. In, Food biopolymers: Structural, functional and nutraceutical properties (pp. 173-186). Springer, Cham. https://doi.org/10.1007/978-3-030-27061-2_7 DOI: https://doi.org/10.1007/978-3-030-27061-2_7

Zhao, X., & Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum l.) and their role in antioxidant capacities in vitro. Chemistry & Biodiversity, 18(10), e2100399. https://doi.org/10.1002/cbdv.202100399 DOI: https://doi.org/10.1002/cbdv.202100399

Descargas

Publicado

2023-07-17

Cómo citar

Jaguey-Hernández, Y. ., Castañeda-Ovando, A. ., Castañeda-Ovando, E. ., Tapia-Ignacio, C. ., Contreras-López, E. ., & Gonzalez-Olivares, L. . (2023). Estabilización de antocianinas extraídas de jugo de granada usando arabinoxilanos extraídos de un subproducto de la industria cervecera. Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 732–740. https://doi.org/10.29105/idcyta.v8i1.95