Extracción de arabinoxilanos de subproductos agroindustriales adaptada a la estrategia universal de recuperación de compuestos bioactivos

Autores/as

  • N. Rodríguez-Viveros Universidad Autónoma del Estado de Hidalgo
  • R. Paz-Samaniego Universidad de Sonora
  • A.A. Hernández-Hernández Universidad Autónoma del Estado de Hidalgo
  • L. García-Curiel Universidad Autónoma del Estado de Hidalgo
  • E. Pérez-Escalante Universidad Autónoma del Estado de Hidalgo
  • E. Contreras-López Universidad Autónoma del Estado de Hidalgo
  • J.G. Pérez-Flores Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-9654-3469

DOI:

https://doi.org/10.29105/idcyta.v8i1.100

Palabras clave:

arabinoxilanos, extracción, subproducto

Resumen

Los arabinoxilanos (AX) son polisacáridos de tipo hemicelulosa extraídos principalmente de cereales y subproductos agroindustriales. Están formados por una cadena de xilosas, con ramificaciones de arabinosa y otros azúcares. Además, pueden tener ácidos fenólicos como el ácido ferúlico esterificado que permite el entrecruzamiento de las cadenas y las posibles aplicaciones del polímero. Las características de los AX dependen de la fuente y el procedimiento de extracción por lo que en este trabajo se realizó una revisión de los métodos de extracción de AX partir de los subproductos de procesos agroindustriales, centrada en la estrategia universal de recuperación de compuestos bioactivos. Esta técnica se realiza en cinco etapas que van desde el nivel macroscópico al micromolecular para posteriormente aislar la sustancia bioactiva utilizando técnicas convencionales o emergentes, dependiendo de costos y beneficios en los procesos, así como de las características de la matriz. La muestra puede ser previamente tratada para facilitar la extracción. Existen otros métodos de extracción como extracción alcalina, la extracción ácida y extracción enzimática. La elección de la técnica de extracción es importante para lograr el máximo aprovechamiento y recuperación de los AX de subproductos agroindustriales, para aplicaciones en áreas como la industria alimentaria, cosmética y farmacéutica.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Anderson, C., & Simsek, S. (2019). A novel combination of methods for the extraction and purification of arabinoxylan from by-products of the cereal industry. Journal of Food Measurement and Characterization, 1-9.

Arai, T., Biely, P., Uhliariková, I., Sato, N., Makishima, S., Mizuno, M., & Amano, Y. (2019). Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. Journal of Bioscience and Bioengineering, 127 (2), 222-230. DOI: https://doi.org/10.1016/j.jbiosc.2018.07.016

Ayala, S. F. E., Serna, S. S. O., & Welti, C. J. (2016). Effect of processing time, temperature and alkali concentration on yield extraction, structure and gelling properties of corn fiber arabinoxylans. Food Hydrocolloids, 60, 21-28. DOI: https://doi.org/10.1016/j.foodhyd.2016.03.014

Bartolomé, B., Santos, M., Jiménez, J., Del Nozal, M., & Gómez-Cordovés, C. (2002). Pentoses and hydroxycinnamic acids in brewer’s spent grain. Journal of Cereal Science, 36 (1), 51-58. DOI: https://doi.org/10.1006/jcrs.2002.0442

Bender, D., Nemeth, R., Wimmer, M., Götschhofer, S., Biolchi, M., Török, K., & Schoenlechner, R. (2017). Optimization of arabinoxylan isolation from rye bran by adapting extraction solvent and use of enzymes. Journal of Food Science, 82 (11), 2562-2568. DOI: https://doi.org/10.1111/1750-3841.13920

Bosmans, T. J., Stépén, A. M., Toriz, G., Renneckar, S., Karabulut, E., Wågberg, L., & Gatenholm, P. (2014). Assembly of debranched xylan from solution and on nanocellulosic surfaces. Biomacromolecules, 15 (3), 924-930. DOI: https://doi.org/10.1021/bm4017868

Cantu, J, T. M., Iacomini, M., Cipriani, T. R., & Cordeiro, L. M. (2017). Isolation and characterization of a xylan with industrial and biomedical applications from edible açaí berries (Euterpe oleraceae). Food Chemistry, 221, 1595-1597. DOI: https://doi.org/10.1016/j.foodchem.2016.10.133

Campbell, G. M., Mustač, N. C., Alyassin, M., Gomez, L. D., Simister, R., Flint, J., Philips, D. J., Gronnow, M. J., & Westwood, N. J. (2019). Integrated processing of sugarcane bagasse: Arabinoxylan extraction integrated with ethanol production. Biochemical Engineering Journal 146, 31-40. DOI: https://doi.org/10.1016/j.bej.2019.03.001

Coelho, E., Rocha, M. A. M., Moreira, A. S., Domingues, M. R. M., & Coimbra, M. A. (2016). Revisiting the structural features of arabinoxylans from brewers’ spent grain. Carbohydrate Polymers, 139, 167-176. DOI: https://doi.org/10.1016/j.carbpol.2015.12.006

Courtin, C. M., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour breadmaking. Journal of Cereal Science, 35 (3), 225-243. DOI: https://doi.org/10.1006/jcrs.2001.0433

Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., & Paquot, M. (2011). Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53 (1), 45-52. DOI: https://doi.org/10.1016/j.jcs.2010.09.002

Fadel, A., Plunkett, A., Li, W., Tessu, G. V. E., Nyaranga, R. R., Fadel, F., & Ashworth, J. J. (2018). Modulation of innate and adaptive immune responses by arabinoxylans. Journal of Food Biochemistry, 42 (2). DOI: https://doi.org/10.1111/jfbc.12473

Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol., 26, 68-87. DOI: https://doi.org/10.1016/j.tifs.2012.03.003

Galanakis, C. M. (2015). The universal recovery strategy. Food Waste Recovery, 59-81. https://doi.org/10.1016/B978-0-12-800351-0.00003-1. DOI: https://doi.org/10.1016/B978-0-12-800351-0.00003-1

Huang, J., Wang, Q., Xu, Q., Zhang, Y., Lin, B., Guan, X., Qian, L., & Zheng, Y. (2019). In vitro fermentation of O-acetyl-arabinoxylan from bamboo shavings by human colonic microbiota. International Journal of Biological Macromolecules 125, 27-34. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.024

Izydorczyk, M. S., & Biliaderis, C. G. (2007). Arabinoxylans: Techonologically and nutrionally functional plant polysaccharides. En M. S. Biliaderis, C.G. & Izydorczyk (Ed.), Functional Food Carbohydrates, 249-283. Boca Raton, Florida, United States: CRC Press Taylor and Francis Group. doi: https://doi.org/10.1201/9781420003512. DOI: https://doi.org/10.1201/9781420003512.ch7

Jacquemin, L., Mogni, A., Zeitoun, R., Guinot, C., Sablayrolles, C., Saulnier, L., & Pontalier, P. Y. (2015). Comparison of different twin-screw extraction conditions for the production of arabinoxylans. Carbohydrate Polymers, 116, 86-94. DOI: https://doi.org/10.1016/j.carbpol.2014.06.071

Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. European Journal of Nutrition, 42 (1), 55-60. DOI: https://doi.org/10.1007/s00394-003-0400-z

Kiszonas, A. M., Fuerst, E. P., & Morris, C. F. (2013). Wheat arabinoxylan structure provides insight into function. Cereal Chemistry, 90 (4), 387-395 DOI: https://doi.org/10.1094/CCHEM-02-13-0025-FI

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38 (4), 449-467 DOI: https://doi.org/10.1016/j.pecs.2012.03.002

Mendez, E. M. A., Carvajal, M. E., Rascon, C. A., Astiazaran, G. H. F., & Valencia, R. D. E. (2018). Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxidative Medicine and Cellular Longevity, 2018. DOI: https://doi.org/10.1155/2018/2314759

Mendez, E. M. A., Carvajal, M. E., Rascon, C. A., López, F. Y. L. & Lizardi, M. J. (2019). Arabinoxylans and the remaining protein fraction relantionship with the gelling capability of the polysaccharide. Acta universitaria 29, https://doi.org/10.15174/au.2019.1755. DOI: https://doi.org/10.15174/au.2019.1755

Muralikrishna, G., & Subba Rao, M. (2007). Cereal non-cellulosic polysaccharides: structure and function relationship–an overview. Critical Reviews in Food Science and Nutrition, 47 (6), 599-610. DOI: https://doi.org/10.1080/10408390600919056

Naidu, D. S., Hlangothi, S. P., & John, M. J. (2018). Bio-based products from xylan: A review. Carbohydrate Polymers, 179, 28-41. DOI: https://doi.org/10.1016/j.carbpol.2017.09.064

Nascimento, G. E. d., Baggio, C. H., Werner, M. F. D., Iacomini, M., & Cordeiro, L. M. (2016). Arabinoxylan from Mucilage of Tomatoes (Solanum lycopersicum L.): Structure and Antinociceptive Effect in Mouse Models. Journal of Agricultural and Food Chemistry, 64 (6), 1239-1244 DOI: https://doi.org/10.1021/acs.jafc.5b05134

Niño, M. G. , Carvajal, M. E. , Rascon, C. A. , Marquez, E. J., Guerrero, V. , & Salas, M. E. (2010). Feruloylated arabinoxylans and arabinoxylan gels: Structure, sources and applications. Phytochemistry Reviews , 9 (1), 111-120. doi: https://doi.org/10.1007/s11101-009-9147-3 DOI: https://doi.org/10.1007/s11101-009-9147-3

Paz, S. R., Rascón, C. A., Brown, B. F., Carvajal, M. E., Pedroza, M. M., Silva, C. E., & Lizar, M. J. (2018). Electrospray-assisted fabrication of coreshell arabinoxylan gel particles for insulin and probiotics entrapment. Journal of Applied Polymer Science, 135 (26), 46411. DOI: https://doi.org/10.1002/app.46411

Peng, F., Peng, P., Xu, F., & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30 (4), 879-903. DOI: https://doi.org/10.1016/j.biotechadv.2012.01.018

Peng, X., Nie, S., Li, X., Huang, X., & Li, Q. (2019). Characteristics of the Water-and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems. Molecules, 24 (1), 212. DOI: https://doi.org/10.3390/molecules24010212

Pérez, F. J. G., Contreras, L. E., Castañeda, O. A., Pérez, M. F., Aguilar, A. K., Álvarez, R. G. A., & Téllez, J. A. (2019). Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Research International, 116, 1020-1030. DOI: https://doi.org/10.1016/j.foodres.2018.09.041

Radenkovs, V., Juhnevica, R. K., Górnaś, P., & Seglina, D. (2018). Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends in Food Science & Technology, 77, 64-76. DOI: https://doi.org/10.1016/j.tifs.2018.05.013

Rosicka, K. J., Komisarczyk, A., Nebesny, E., & Makowski, B. (2016). The influence of arabinoxylans on the quality of grain industry products. European Food Research and Technology, 242 (3), 295-303. DOI: https://doi.org/10.1007/s00217-015-2549-0

Saulnier, L., Sado, P. E., Branlard, G., Charmet, G., & Guillon, F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science, 46 (3), 261-281. DOI: https://doi.org/10.1016/j.jcs.2007.06.014

Sheikhi, P., & Petroudy, S. R. D. (2018). Comparative Study of Xylan Extracted by Sodium and Potassium Hydroxides (NaOH and KOH) from Bagasse Pulp: Characterization and Morphological Properties. Journal of Polymers and the Environment, 26 (9), 3710-3717. DOI: https://doi.org/10.1007/s10924-018-1249-9

Singh, J. K., Vyas, P., Dubey, A., Upadhyaya, C. P., Kothari, R., Tyagi, V., & Kumar, A. (2018). Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Frontiers in Bioscience (Scholar Edition), 10, 350-371 DOI: https://doi.org/10.2741/s521

Stoklosa, R. J., Latona, R. J., Bonnaillie, L. M., & Yadav, M. P. (2019). Evaluation of Arabinoxylan Isolated from Sorghum Bran, Biomass, and Bagasse for Film Formation. Carbohydrate Polymers, 213, 382-392. DOI: https://doi.org/10.1016/j.carbpol.2019.03.018

Sun, X. F., Sun, R., Fowler, P., & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. Journal of Agricultural and Food Chemistry, 53 (4), 860-870. DOI: https://doi.org/10.1021/jf040456q

Tian, L., Gruppen, H., & Schols, H. A. (2015). Characterization of (glucurono) arabinoxylans from oats using enzymatic fingerprinting. Journal of Agricultural and Food Chemistry, 63 (50), 10822-10830.. DOI: https://doi.org/10.1021/acs.jafc.5b04419

Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry, 57 (18), 8467-8473. DOI: https://doi.org/10.1021/jf901870r

Xu, F., Liu, C., Geng, Z., Sun, J., Sun, R., Hei, B., & Je, J. (2006). Characterisation of degraded organosolv hemicelluloses from wheat straw. Polymer Degradation and Stability, 91 (8), 1880-1886. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.11.002

Yadav, M. P., Kale, M. S., Hicks, K. B., & Hanah, K. (2017). Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocolloids, 63, 545-551. DOI: https://doi.org/10.1016/j.foodhyd.2016.09.022

Zhang, S., Li, W., Smith, C., & Musa, H. (2015). Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Critical Reviews in Food Science and Nutrition, 55 (8), 1035-1052 DOI: https://doi.org/10.1080/10408398.2012.705188

Zhang, Z., Smith, C., & Li, W. (2014). Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Research International, 65, 423-436. DOI: https://doi.org/10.1016/j.foodres.2014.05.068

Zhang, P., Wampler, J., Bhunia, A. K., Burkholder, K. M., Patterson, J. A., & Whistler, R. L. (2004). Effects of Atabinoxylans on Activation of Murine Macrophages and Growth Performance of Broiler Chicks. Cereal Chemistry, 81 (4), 511-514. DOI: https://doi.org/10.1094/CCHEM.2004.81.4.511

Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., & Cao, L. (2010). Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers, 81 (4), 784-789. DOI: https://doi.org/10.1016/j.carbpol.2010.03.040

Descargas

Publicado

2023-07-17

Cómo citar

Rodríguez-Viveros, N. ., Paz-Samaniego, R. ., Hernández-Hernández, A. ., García-Curiel, L. ., Pérez-Escalante, E. ., Contreras-López, E. ., & Pérez-Flores, J. . (2023). Extracción de arabinoxilanos de subproductos agroindustriales adaptada a la estrategia universal de recuperación de compuestos bioactivos. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), 774–784. https://doi.org/10.29105/idcyta.v8i1.100