Extracción de arabinoxilanos de subproductos agroindustriales adaptada a la estrategia universal de recuperación de compuestos bioactivos

Authors

  • N. Rodríguez-Viveros Universidad Autónoma del Estado de Hidalgo
  • R. Paz-Samaniego Universidad de Sonora
  • A.A. Hernández-Hernández Universidad Autónoma del Estado de Hidalgo
  • L. García-Curiel Universidad Autónoma del Estado de Hidalgo
  • E. Pérez-Escalante Universidad Autónoma del Estado de Hidalgo
  • E. Contreras-López Universidad Autónoma del Estado de Hidalgo
  • J.G. Pérez-Flores Universidad Autónoma del Estado de Hidalgo https://orcid.org/0000-0002-9654-3469

DOI:

https://doi.org/10.29105/idcyta.v8i1.100

Keywords:

arabinoxylans, extraction, by-product

Abstract

Arabinoxylans (AX) are hemicellulose-type polysaccharides extracted mainly from cereals and agro-industrial by-products. They are formed by a chain of xylose, with ramifications of arabinose and other sugars. Also, they can have phenolic acids such as esterified ferulic acid that allows crosslinking of the chains making the polymer interesting for further applications. The characteristics of the AX depend on the source and the extraction process, so in this work a review of the extraction methods of AX from by-products of agro-industrial processes was carried out, focused on the universal strategy for the recovery of bioactive compounds. This technique is carried out in five stages, from the macroscopic to the micromolecular level to subsequently isolate the bioactive compounds using conventional or emerging techniques, depending on the costs and benefits of the processes and the characteristics of the matrix. The sample can be previously treated to facilitate extraction. Other extraction methods of interest are alkaline extraction, acid extraction and enzymatic extraction. The choice of the extraction technique is important to achieve maximum use and recovery of AX from agro-industrial by-products for applications in food, cosmetic and pharmaceutical industries.

Downloads

Download data is not yet available.

References

Anderson, C., & Simsek, S. (2019). A novel combination of methods for the extraction and purification of arabinoxylan from by-products of the cereal industry. Journal of Food Measurement and Characterization, 1-9.

Arai, T., Biely, P., Uhliariková, I., Sato, N., Makishima, S., Mizuno, M., & Amano, Y. (2019). Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. Journal of Bioscience and Bioengineering, 127 (2), 222-230. DOI: https://doi.org/10.1016/j.jbiosc.2018.07.016

Ayala, S. F. E., Serna, S. S. O., & Welti, C. J. (2016). Effect of processing time, temperature and alkali concentration on yield extraction, structure and gelling properties of corn fiber arabinoxylans. Food Hydrocolloids, 60, 21-28. DOI: https://doi.org/10.1016/j.foodhyd.2016.03.014

Bartolomé, B., Santos, M., Jiménez, J., Del Nozal, M., & Gómez-Cordovés, C. (2002). Pentoses and hydroxycinnamic acids in brewer’s spent grain. Journal of Cereal Science, 36 (1), 51-58. DOI: https://doi.org/10.1006/jcrs.2002.0442

Bender, D., Nemeth, R., Wimmer, M., Götschhofer, S., Biolchi, M., Török, K., & Schoenlechner, R. (2017). Optimization of arabinoxylan isolation from rye bran by adapting extraction solvent and use of enzymes. Journal of Food Science, 82 (11), 2562-2568. DOI: https://doi.org/10.1111/1750-3841.13920

Bosmans, T. J., Stépén, A. M., Toriz, G., Renneckar, S., Karabulut, E., Wågberg, L., & Gatenholm, P. (2014). Assembly of debranched xylan from solution and on nanocellulosic surfaces. Biomacromolecules, 15 (3), 924-930. DOI: https://doi.org/10.1021/bm4017868

Cantu, J, T. M., Iacomini, M., Cipriani, T. R., & Cordeiro, L. M. (2017). Isolation and characterization of a xylan with industrial and biomedical applications from edible açaí berries (Euterpe oleraceae). Food Chemistry, 221, 1595-1597. DOI: https://doi.org/10.1016/j.foodchem.2016.10.133

Campbell, G. M., Mustač, N. C., Alyassin, M., Gomez, L. D., Simister, R., Flint, J., Philips, D. J., Gronnow, M. J., & Westwood, N. J. (2019). Integrated processing of sugarcane bagasse: Arabinoxylan extraction integrated with ethanol production. Biochemical Engineering Journal 146, 31-40. DOI: https://doi.org/10.1016/j.bej.2019.03.001

Coelho, E., Rocha, M. A. M., Moreira, A. S., Domingues, M. R. M., & Coimbra, M. A. (2016). Revisiting the structural features of arabinoxylans from brewers’ spent grain. Carbohydrate Polymers, 139, 167-176. DOI: https://doi.org/10.1016/j.carbpol.2015.12.006

Courtin, C. M., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour breadmaking. Journal of Cereal Science, 35 (3), 225-243. DOI: https://doi.org/10.1006/jcrs.2001.0433

Escarnot, E., Aguedo, M., Agneessens, R., Wathelet, B., & Paquot, M. (2011). Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science, 53 (1), 45-52. DOI: https://doi.org/10.1016/j.jcs.2010.09.002

Fadel, A., Plunkett, A., Li, W., Tessu, G. V. E., Nyaranga, R. R., Fadel, F., & Ashworth, J. J. (2018). Modulation of innate and adaptive immune responses by arabinoxylans. Journal of Food Biochemistry, 42 (2). DOI: https://doi.org/10.1111/jfbc.12473

Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol., 26, 68-87. DOI: https://doi.org/10.1016/j.tifs.2012.03.003

Galanakis, C. M. (2015). The universal recovery strategy. Food Waste Recovery, 59-81. https://doi.org/10.1016/B978-0-12-800351-0.00003-1. DOI: https://doi.org/10.1016/B978-0-12-800351-0.00003-1

Huang, J., Wang, Q., Xu, Q., Zhang, Y., Lin, B., Guan, X., Qian, L., & Zheng, Y. (2019). In vitro fermentation of O-acetyl-arabinoxylan from bamboo shavings by human colonic microbiota. International Journal of Biological Macromolecules 125, 27-34. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.024

Izydorczyk, M. S., & Biliaderis, C. G. (2007). Arabinoxylans: Techonologically and nutrionally functional plant polysaccharides. En M. S. Biliaderis, C.G. & Izydorczyk (Ed.), Functional Food Carbohydrates, 249-283. Boca Raton, Florida, United States: CRC Press Taylor and Francis Group. doi: https://doi.org/10.1201/9781420003512. DOI: https://doi.org/10.1201/9781420003512.ch7

Jacquemin, L., Mogni, A., Zeitoun, R., Guinot, C., Sablayrolles, C., Saulnier, L., & Pontalier, P. Y. (2015). Comparison of different twin-screw extraction conditions for the production of arabinoxylans. Carbohydrate Polymers, 116, 86-94. DOI: https://doi.org/10.1016/j.carbpol.2014.06.071

Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. European Journal of Nutrition, 42 (1), 55-60. DOI: https://doi.org/10.1007/s00394-003-0400-z

Kiszonas, A. M., Fuerst, E. P., & Morris, C. F. (2013). Wheat arabinoxylan structure provides insight into function. Cereal Chemistry, 90 (4), 387-395 DOI: https://doi.org/10.1094/CCHEM-02-13-0025-FI

Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38 (4), 449-467 DOI: https://doi.org/10.1016/j.pecs.2012.03.002

Mendez, E. M. A., Carvajal, M. E., Rascon, C. A., Astiazaran, G. H. F., & Valencia, R. D. E. (2018). Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxidative Medicine and Cellular Longevity, 2018. DOI: https://doi.org/10.1155/2018/2314759

Mendez, E. M. A., Carvajal, M. E., Rascon, C. A., López, F. Y. L. & Lizardi, M. J. (2019). Arabinoxylans and the remaining protein fraction relantionship with the gelling capability of the polysaccharide. Acta universitaria 29, https://doi.org/10.15174/au.2019.1755. DOI: https://doi.org/10.15174/au.2019.1755

Muralikrishna, G., & Subba Rao, M. (2007). Cereal non-cellulosic polysaccharides: structure and function relationship–an overview. Critical Reviews in Food Science and Nutrition, 47 (6), 599-610. DOI: https://doi.org/10.1080/10408390600919056

Naidu, D. S., Hlangothi, S. P., & John, M. J. (2018). Bio-based products from xylan: A review. Carbohydrate Polymers, 179, 28-41. DOI: https://doi.org/10.1016/j.carbpol.2017.09.064

Nascimento, G. E. d., Baggio, C. H., Werner, M. F. D., Iacomini, M., & Cordeiro, L. M. (2016). Arabinoxylan from Mucilage of Tomatoes (Solanum lycopersicum L.): Structure and Antinociceptive Effect in Mouse Models. Journal of Agricultural and Food Chemistry, 64 (6), 1239-1244 DOI: https://doi.org/10.1021/acs.jafc.5b05134

Niño, M. G. , Carvajal, M. E. , Rascon, C. A. , Marquez, E. J., Guerrero, V. , & Salas, M. E. (2010). Feruloylated arabinoxylans and arabinoxylan gels: Structure, sources and applications. Phytochemistry Reviews , 9 (1), 111-120. doi: https://doi.org/10.1007/s11101-009-9147-3 DOI: https://doi.org/10.1007/s11101-009-9147-3

Paz, S. R., Rascón, C. A., Brown, B. F., Carvajal, M. E., Pedroza, M. M., Silva, C. E., & Lizar, M. J. (2018). Electrospray-assisted fabrication of coreshell arabinoxylan gel particles for insulin and probiotics entrapment. Journal of Applied Polymer Science, 135 (26), 46411. DOI: https://doi.org/10.1002/app.46411

Peng, F., Peng, P., Xu, F., & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30 (4), 879-903. DOI: https://doi.org/10.1016/j.biotechadv.2012.01.018

Peng, X., Nie, S., Li, X., Huang, X., & Li, Q. (2019). Characteristics of the Water-and Alkali-Soluble Hemicelluloses Fractionated by Sequential Acidification and Graded-Ethanol from Sweet Maize Stems. Molecules, 24 (1), 212. DOI: https://doi.org/10.3390/molecules24010212

Pérez, F. J. G., Contreras, L. E., Castañeda, O. A., Pérez, M. F., Aguilar, A. K., Álvarez, R. G. A., & Téllez, J. A. (2019). Physicochemical characterization of an arabinoxylan-rich fraction from brewers’ spent grain and its application as a release matrix for caffeine. Food Research International, 116, 1020-1030. DOI: https://doi.org/10.1016/j.foodres.2018.09.041

Radenkovs, V., Juhnevica, R. K., Górnaś, P., & Seglina, D. (2018). Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends in Food Science & Technology, 77, 64-76. DOI: https://doi.org/10.1016/j.tifs.2018.05.013

Rosicka, K. J., Komisarczyk, A., Nebesny, E., & Makowski, B. (2016). The influence of arabinoxylans on the quality of grain industry products. European Food Research and Technology, 242 (3), 295-303. DOI: https://doi.org/10.1007/s00217-015-2549-0

Saulnier, L., Sado, P. E., Branlard, G., Charmet, G., & Guillon, F. (2007). Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science, 46 (3), 261-281. DOI: https://doi.org/10.1016/j.jcs.2007.06.014

Sheikhi, P., & Petroudy, S. R. D. (2018). Comparative Study of Xylan Extracted by Sodium and Potassium Hydroxides (NaOH and KOH) from Bagasse Pulp: Characterization and Morphological Properties. Journal of Polymers and the Environment, 26 (9), 3710-3717. DOI: https://doi.org/10.1007/s10924-018-1249-9

Singh, J. K., Vyas, P., Dubey, A., Upadhyaya, C. P., Kothari, R., Tyagi, V., & Kumar, A. (2018). Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol. Frontiers in Bioscience (Scholar Edition), 10, 350-371 DOI: https://doi.org/10.2741/s521

Stoklosa, R. J., Latona, R. J., Bonnaillie, L. M., & Yadav, M. P. (2019). Evaluation of Arabinoxylan Isolated from Sorghum Bran, Biomass, and Bagasse for Film Formation. Carbohydrate Polymers, 213, 382-392. DOI: https://doi.org/10.1016/j.carbpol.2019.03.018

Sun, X. F., Sun, R., Fowler, P., & Baird, M. S. (2005). Extraction and characterization of original lignin and hemicelluloses from wheat straw. Journal of Agricultural and Food Chemistry, 53 (4), 860-870. DOI: https://doi.org/10.1021/jf040456q

Tian, L., Gruppen, H., & Schols, H. A. (2015). Characterization of (glucurono) arabinoxylans from oats using enzymatic fingerprinting. Journal of Agricultural and Food Chemistry, 63 (50), 10822-10830.. DOI: https://doi.org/10.1021/acs.jafc.5b04419

Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A., & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry, 57 (18), 8467-8473. DOI: https://doi.org/10.1021/jf901870r

Xu, F., Liu, C., Geng, Z., Sun, J., Sun, R., Hei, B., & Je, J. (2006). Characterisation of degraded organosolv hemicelluloses from wheat straw. Polymer Degradation and Stability, 91 (8), 1880-1886. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.11.002

Yadav, M. P., Kale, M. S., Hicks, K. B., & Hanah, K. (2017). Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocolloids, 63, 545-551. DOI: https://doi.org/10.1016/j.foodhyd.2016.09.022

Zhang, S., Li, W., Smith, C., & Musa, H. (2015). Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Critical Reviews in Food Science and Nutrition, 55 (8), 1035-1052 DOI: https://doi.org/10.1080/10408398.2012.705188

Zhang, Z., Smith, C., & Li, W. (2014). Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Research International, 65, 423-436. DOI: https://doi.org/10.1016/j.foodres.2014.05.068

Zhang, P., Wampler, J., Bhunia, A. K., Burkholder, K. M., Patterson, J. A., & Whistler, R. L. (2004). Effects of Atabinoxylans on Activation of Murine Macrophages and Growth Performance of Broiler Chicks. Cereal Chemistry, 81 (4), 511-514. DOI: https://doi.org/10.1094/CCHEM.2004.81.4.511

Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., & Cao, L. (2010). Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers, 81 (4), 784-789. DOI: https://doi.org/10.1016/j.carbpol.2010.03.040

Published

2023-07-17

How to Cite

Rodríguez-Viveros, N. ., Paz-Samaniego, R. ., Hernández-Hernández, A. ., García-Curiel, L. ., Pérez-Escalante, E. ., Contreras-López, E. ., & Pérez-Flores, J. . (2023). Extracción de arabinoxilanos de subproductos agroindustriales adaptada a la estrategia universal de recuperación de compuestos bioactivos. Revista Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), 774–784. https://doi.org/10.29105/idcyta.v8i1.100