Obtención y caracterización de un hidrolizado de proteína de Vigna radiata L. (frijol mungo) con potencial Bioestimulante

Autores/as

  • F.C. Arámbula-Castillo Universidad Autónoma de Nuevo León
  • M. Zegbe-Rodríguez Universidad Autónoma de Nuevo León
  • C. Rivas-Morales Universidad Autónoma de Nuevo León
  • D.G. García-Hernández Universidad Autónoma de Nuevo León
  • E.D. Cabello-Ruiz Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/idcyta.v8i1.25

Palabras clave:

Vigna radiata L, hidrolizado de proteína, bioestimulante

Resumen

La agricultura enfrenta el desafío de gran demanda alimenticia en un entorno desfavorable, debido al cambio climático. Los Bioestimulantes abarcan sustancias y microorganismos que "estimulan" el crecimiento y desarrollo de las plantas, mejoran la calidad del cultivo y la resistencia al estrés. Los Hidrolizados de Proteínas (HP) son “una mezcla de péptidos, oligopéptidos y aminoácidos, producto de digestión enzimática y/o química de harinas proteicas”. Vigna radiata L. (Frijol Mungo) es una legumbre importante en países asiáticos y las actividades biológicas de los Hidrolizados de Proteína del Frijol Mungo (HPFM) han sido estudiadas con fines medicinales y/o nutricionales. El objetivo de este estudio fue obtener un HP de la Harina de V. Radiata, el cual posee potencial como Bioestimulante. La proteína fue extraída mediante la técnica “pH-Shift”; el producto se llevó a una hidrólisis enzimática y el Grado de Hidrólisis (GH%) se determinó con la reacción con ninhidrina, mostrando un 5.43% final. La Longitud de Cadena Polipeptídica mostró que el HPFM, tenía péptidos entre 11 y 18 AA (1,21kDa-1,98 kDa). Con lo anterior, es necesario optimizar las condiciones de extracción y reacción de hidrólisis. Este trabajo es una base para la evaluación de actividad como “bioestimulante” de esta leguminosa.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Awuor, O. L., Edward Kirwa, M., Betty, M., & Jackim, M. F. (2017). Optimization of Alcalase hydrolysis conditions for production of Dagaa (Rastrineobola argentea) Protein hydrolysate with antioxidative properties. Industrial Chemistry, 03(01). https://doi.org/10.4172/2469-9764.1000122 DOI: https://doi.org/10.4172/2469-9764.1000122

Bai, Y., Xu, Y., Chang, J., Wang, X., Zhao, Y., & Yu, Z. (2016). Bioactives from stems and leaves of mung beans (Vigna radiata L.). Journal of Functional Foods. https://doi.org/10.1016/j.jff.2016.06.009 DOI: https://doi.org/10.1016/j.jff.2016.06.009

Benítez, R., Ibarz, A., & Pagan, J. (2008). Hidrolizados de proteína: Procesos y aplicaciones. Acta Bioquimica Clinica Latinoamericana, 42(2), 227–236.

Bumrungsart, N., & Duangmal, K. (2019). Optimization of Enzymatic Hydrolysis Condition for Producing Black Gram Bean (Vigna mungo) Hydrolysate with High Antioxidant Activity. In Food and Applied Bioscience Journal (Issue 7).

Caruso, G., de Pascale, S., Cozzolino, E., Giordano, M., El-Nakhel, C., Cuciniello, A., Cenvinzo, V., Colla, G., & Rouphael, Y. (2019). Protein hydrolysate or plant extract- based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants, 8(7), 1–18. https://doi.org/10.3390/plants8070208 DOI: https://doi.org/10.3390/plants8070208

Chunkao, S., Youravong, W., Yupanqui, C. T., Alashi, A. M., & Aluko, R. E. (2020).

Structure and function of mung bean protein- derived iron-binding antioxidant peptides. Foods, 9(10), 1–17. https://doi.org/10.3390/foods9101406 DOI: https://doi.org/10.3390/foods9101406

Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5(September), 1–7. https://doi.org/10.3389/fpls.2014.00448 DOI: https://doi.org/10.3389/fpls.2014.00448

Estrella-Romo, D. A. (2008). Amino acid composition and nitrogen to protein conversion factors for three legumes and two pseudo-cereals.

Famuwagun, A. A., Alashi, A. M., Gbadamosi, S. O., Taiwo, K. A., Oyedele, D., Adebooye, O. C., & Aluko, R. E. (2021). Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods, 10(5). https://doi.org/10.3390/foods10051112 DOI: https://doi.org/10.3390/foods10051112

Ganesan, K., & Xu, B. (2018). Food Science and Human Wellness, 7, 11–33. DOI: https://doi.org/10.1016/j.fshw.2017.11.002

Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. In Nutrients (Vol. 11, Issue 6). MDPI AG. https://doi.org/10.3390/nu11061238 DOI: https://doi.org/10.3390/nu11061238

Lee, C. H. (2017). A simple outline of methods for protein isolation and purification.

Endocrinology and Metabolism, 32(1), 18–22. https://doi.org/10.3803/EnM.2017.32.1.18 DOI: https://doi.org/10.3803/EnM.2017.32.1.18

Leni, G., Soetemans, L., Caligiani, A., Sforza, S., & Bastiaens, L. (2020). Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. Foods, 9(4). https://doi.org/10.3390/foods9040381 DOI: https://doi.org/10.3390/foods9040381

Li, G. H., Le, G. W., Liu, H., & Shi, Y. H. (2005a). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International. https://doi.org/10.1177/1082013205056781 DOI: https://doi.org/10.1177/1082013205056781

Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science and Technology, 45(6), 1205–1211. https://doi.org/10.1111/j.1365-2621.2010.02259.x DOI: https://doi.org/10.1111/j.1365-2621.2010.02259.x

Li, X., Huang, J., Wang, Z., Jiang, X., Yu, W., Zheng, Y., Li, Q., & He, N. (2014). Alkaline extraction and acid precipitation of phenolic compounds from longan (Dimocarpus longan L.) seeds. Separation and Purification Technology, 124, 201– 206.

https://doi.org/10.1016/j.seppur.2014.01.030 DOI: https://doi.org/10.1016/j.seppur.2014.01.030

Mæhre, H. K., Dalheim, L., Edvinsen, G. K., Elvevoll, E. O., & Jensen, I. J. (2018). Protein determination—method matters. Foods, 7(1). https://doi.org/10.3390/foods7010005 DOI: https://doi.org/10.3390/foods7010005

Malleshappa Gowder, S., Chatterjee, J., Chaudhuri, T., & Paul, K. (2014). Prediction and analysis of surface hydrophobic residues in tertiary structure of proteins. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/971258 DOI: https://doi.org/10.1155/2014/971258

Matsumiya, Y., & Kubo, M. (2011). Soybean Peptide: Novel Plant Growth Promoting Peptide from Soybean. Soybean and Nutrition, 215–230. https://doi.org/10.5772/32009 DOI: https://doi.org/10.5772/19132

Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006 DOI: https://doi.org/10.1590/0103-9016-2015-0006

Ni, H., Hayes, H., Stead, D., Liu, G., Yang, H., Li, H., & Raikos, V. (2020). Interaction of whey protein with polyphenols from salal fruits (Gaultheria shallon) and the effects on protein structure and hydrolysis pattern by Flavourzyme®. International Journal of Food Science and Technology, 55(3), 1281–1288. https://doi.org/10.1111/ijfs.14394 DOI: https://doi.org/10.1111/ijfs.14394

Prachansuwan, A., Kriengsinyos, W., Judprasong, K., Kovitvadhi, A., & Chundang, P. (2019). Effect of different pre-boiling treatment on in vitro protein and amino acid digestibility of mung beans [Vigna radiata (L.) Wilczek]. Malaysian Journal of Nutrition, 25(3), 361–375. https://doi.org/10.31246/mjn-2019-0046 DOI: https://doi.org/10.31246/mjn-2019-0046

Sbroggio, M. F., Montilha, M. S., Figueiredo, V. R. G. de, Georgetti, S. R., & Kurozawa,

L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36(2), 375–381. https://doi.org/10.1590/1678-457X.000216 DOI: https://doi.org/10.1590/1678-457X.000216

Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2011). Physicochemical and flavor characteristics of flavoring agent from mungbean protein hydrolyzed by bromelain. Journal of Agricultural and Food Chemistry, 59(15), 8475–8483. DOI: https://doi.org/10.1021/jf202006a

Tang, D., Dong, Y., Ren, H., Li, L., & He, C. (2014). A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). In Chemistry Central Journal. https://doi.org/10.1186/1752- 153X-8-4 DOI: https://doi.org/10.1186/1752-153X-8-4

Valencia, P., Pinto, M., & Almonacid, S. (2014). Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochemistry, 49(2), 258–264. https://doi.org/10.1016/j.procbio.2013.11.012 DOI: https://doi.org/10.1016/j.procbio.2013.11.012

Valenzuela, C., Abugoch, L., Tapia, C., & Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science and Technology, 48(4), 843–849. https://doi.org/10.1111/ijfs.12035 DOI: https://doi.org/10.1111/ijfs.12035

Viernesa, L. B. G., Garcia, R. N., Torio, M. A. O., & Angelia, M. R. N. (2012).

Antihypertensive peptides from vicilin, the major storage protein of mung bean (Vigna radiata (L.) R. wilczek). Journal of Biological Sciences, 12(7), 1–7. https://doi.org/10.3923/jbs.2012.393.399 DOI: https://doi.org/10.3923/jbs.2012.393.399

Wang, M., Jiang, L., Li, Y., Liu, Q., Wang, S., & Sui, X. (2011). Optimization of extraction process of protein isolate from mung bean. Procedia Engineering, 15, 5250–5258. https://doi.org/10.1016/j.proeng.2011.08.973 DOI: https://doi.org/10.1016/j.proeng.2011.08.973

Xia, J., Song, H., Huang, K., Li, S., & Guan, X. (2020). Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein. Journal of Food Science, 85(6), 1735–1741. https://doi.org/10.1111/1750-3841.15139 DOI: https://doi.org/10.1111/1750-3841.15139

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7(January), 2049. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049

Yi-shen, Z., Shuai, S., & Fitzgerald, R. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food & Nutrition Research, 62, 1–11. https://doi.org/10.29219/fnr.v62.1290 DOI: https://doi.org/10.29219/fnr.v62.1290

Yousaf, Z., Saleh, N., Ramazan, A., & Aftab, A. (2016). Postharvesting Techniques and Maintenance of Seed Quality. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. https://doi.org/10.5772/64994 DOI: https://doi.org/10.5772/64994

Zheng, Z., Wang, M., Li, J., Li, J., & Liu, Y. (2020). Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Advances, 10(5), 2634–2645. https://doi.org/10.1039/c9ra06468k DOI: https://doi.org/10.1039/C9RA06468K

Descargas

Publicado

2023-07-17

Cómo citar

Arámbula-Castillo, F. ., Zegbe-Rodríguez, M. ., Rivas-Morales, C. ., García-Hernández , D. ., & Cabello-Ruiz, E. . (2023). Obtención y caracterización de un hidrolizado de proteína de Vigna radiata L. (frijol mungo) con potencial Bioestimulante. Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 170–179. https://doi.org/10.29105/idcyta.v8i1.25