Obtención y caracterización de un hidrolizado de proteína de Vigna radiata L. (frijol mungo) con potencial Bioestimulante
DOI:
https://doi.org/10.29105/idcyta.v8i1.25Keywords:
Vigna radiata L, protein hydrolysates, biostimulantsAbstract
include substances and microorganisms that "stimulate" the growth and development of plants, improve crop quality and resistance to stress. Protein Hydrolysates (HP) are “a mixture of peptides, oligopeptides and amino acids, product of an enzymatic and/or chemical digestion of protein flours”. Vigna radiata L. (Mung Bean) is an important legume in Asian countries and the biological activities of Mung Bean Protein Hydrolysates (HPFM) have been studied for medicinal and/or nutritional purposes. The objective of this study was to obtain a HP of V. radiata flour, which has potential as a Biostimulant. The protein was extracted using the "pH-Shift" technique; the product was taken to an enzymatic hydrolysis and the Degree of Hydrolysis (GH%) was determined with the reaction with ninhydrin, showing a final 5.43%. The Polypeptide Chain Length showed that the HPFM had peptides between 11 and 18 AA (1,21kDa-1,98kDa). With the above, it is necessary to optimize the extraction and hydrolysis reaction conditions. This work is a basis for the evaluation of activity as a "biostimulant" of this legume.
Downloads
References
Awuor, O. L., Edward Kirwa, M., Betty, M., & Jackim, M. F. (2017). Optimization of Alcalase hydrolysis conditions for production of Dagaa (Rastrineobola argentea) Protein hydrolysate with antioxidative properties. Industrial Chemistry, 03(01). https://doi.org/10.4172/2469-9764.1000122 DOI: https://doi.org/10.4172/2469-9764.1000122
Bai, Y., Xu, Y., Chang, J., Wang, X., Zhao, Y., & Yu, Z. (2016). Bioactives from stems and leaves of mung beans (Vigna radiata L.). Journal of Functional Foods. https://doi.org/10.1016/j.jff.2016.06.009 DOI: https://doi.org/10.1016/j.jff.2016.06.009
Benítez, R., Ibarz, A., & Pagan, J. (2008). Hidrolizados de proteína: Procesos y aplicaciones. Acta Bioquimica Clinica Latinoamericana, 42(2), 227–236.
Bumrungsart, N., & Duangmal, K. (2019). Optimization of Enzymatic Hydrolysis Condition for Producing Black Gram Bean (Vigna mungo) Hydrolysate with High Antioxidant Activity. In Food and Applied Bioscience Journal (Issue 7).
Caruso, G., de Pascale, S., Cozzolino, E., Giordano, M., El-Nakhel, C., Cuciniello, A., Cenvinzo, V., Colla, G., & Rouphael, Y. (2019). Protein hydrolysate or plant extract- based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants, 8(7), 1–18. https://doi.org/10.3390/plants8070208 DOI: https://doi.org/10.3390/plants8070208
Chunkao, S., Youravong, W., Yupanqui, C. T., Alashi, A. M., & Aluko, R. E. (2020).
Structure and function of mung bean protein- derived iron-binding antioxidant peptides. Foods, 9(10), 1–17. https://doi.org/10.3390/foods9101406 DOI: https://doi.org/10.3390/foods9101406
Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5(September), 1–7. https://doi.org/10.3389/fpls.2014.00448 DOI: https://doi.org/10.3389/fpls.2014.00448
Estrella-Romo, D. A. (2008). Amino acid composition and nitrogen to protein conversion factors for three legumes and two pseudo-cereals.
Famuwagun, A. A., Alashi, A. M., Gbadamosi, S. O., Taiwo, K. A., Oyedele, D., Adebooye, O. C., & Aluko, R. E. (2021). Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods, 10(5). https://doi.org/10.3390/foods10051112 DOI: https://doi.org/10.3390/foods10051112
Ganesan, K., & Xu, B. (2018). Food Science and Human Wellness, 7, 11–33. DOI: https://doi.org/10.1016/j.fshw.2017.11.002
Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. In Nutrients (Vol. 11, Issue 6). MDPI AG. https://doi.org/10.3390/nu11061238 DOI: https://doi.org/10.3390/nu11061238
Lee, C. H. (2017). A simple outline of methods for protein isolation and purification.
Endocrinology and Metabolism, 32(1), 18–22. https://doi.org/10.3803/EnM.2017.32.1.18 DOI: https://doi.org/10.3803/EnM.2017.32.1.18
Leni, G., Soetemans, L., Caligiani, A., Sforza, S., & Bastiaens, L. (2020). Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. Foods, 9(4). https://doi.org/10.3390/foods9040381 DOI: https://doi.org/10.3390/foods9040381
Li, G. H., Le, G. W., Liu, H., & Shi, Y. H. (2005a). Mung-bean protein hydrolysates obtained with alcalase exhibit angiotensin I-converting enzyme inhibitory activity. Food Science and Technology International. https://doi.org/10.1177/1082013205056781 DOI: https://doi.org/10.1177/1082013205056781
Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science and Technology, 45(6), 1205–1211. https://doi.org/10.1111/j.1365-2621.2010.02259.x DOI: https://doi.org/10.1111/j.1365-2621.2010.02259.x
Li, X., Huang, J., Wang, Z., Jiang, X., Yu, W., Zheng, Y., Li, Q., & He, N. (2014). Alkaline extraction and acid precipitation of phenolic compounds from longan (Dimocarpus longan L.) seeds. Separation and Purification Technology, 124, 201– 206.
https://doi.org/10.1016/j.seppur.2014.01.030 DOI: https://doi.org/10.1016/j.seppur.2014.01.030
Mæhre, H. K., Dalheim, L., Edvinsen, G. K., Elvevoll, E. O., & Jensen, I. J. (2018). Protein determination—method matters. Foods, 7(1). https://doi.org/10.3390/foods7010005 DOI: https://doi.org/10.3390/foods7010005
Malleshappa Gowder, S., Chatterjee, J., Chaudhuri, T., & Paul, K. (2014). Prediction and analysis of surface hydrophobic residues in tertiary structure of proteins. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/971258 DOI: https://doi.org/10.1155/2014/971258
Matsumiya, Y., & Kubo, M. (2011). Soybean Peptide: Novel Plant Growth Promoting Peptide from Soybean. Soybean and Nutrition, 215–230. https://doi.org/10.5772/32009 DOI: https://doi.org/10.5772/19132
Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006 DOI: https://doi.org/10.1590/0103-9016-2015-0006
Ni, H., Hayes, H., Stead, D., Liu, G., Yang, H., Li, H., & Raikos, V. (2020). Interaction of whey protein with polyphenols from salal fruits (Gaultheria shallon) and the effects on protein structure and hydrolysis pattern by Flavourzyme®. International Journal of Food Science and Technology, 55(3), 1281–1288. https://doi.org/10.1111/ijfs.14394 DOI: https://doi.org/10.1111/ijfs.14394
Prachansuwan, A., Kriengsinyos, W., Judprasong, K., Kovitvadhi, A., & Chundang, P. (2019). Effect of different pre-boiling treatment on in vitro protein and amino acid digestibility of mung beans [Vigna radiata (L.) Wilczek]. Malaysian Journal of Nutrition, 25(3), 361–375. https://doi.org/10.31246/mjn-2019-0046 DOI: https://doi.org/10.31246/mjn-2019-0046
Sbroggio, M. F., Montilha, M. S., Figueiredo, V. R. G. de, Georgetti, S. R., & Kurozawa,
L. E. (2016). Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology, 36(2), 375–381. https://doi.org/10.1590/1678-457X.000216 DOI: https://doi.org/10.1590/1678-457X.000216
Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2011). Physicochemical and flavor characteristics of flavoring agent from mungbean protein hydrolyzed by bromelain. Journal of Agricultural and Food Chemistry, 59(15), 8475–8483. DOI: https://doi.org/10.1021/jf202006a
Tang, D., Dong, Y., Ren, H., Li, L., & He, C. (2014). A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). In Chemistry Central Journal. https://doi.org/10.1186/1752- 153X-8-4 DOI: https://doi.org/10.1186/1752-153X-8-4
Valencia, P., Pinto, M., & Almonacid, S. (2014). Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochemistry, 49(2), 258–264. https://doi.org/10.1016/j.procbio.2013.11.012 DOI: https://doi.org/10.1016/j.procbio.2013.11.012
Valenzuela, C., Abugoch, L., Tapia, C., & Gamboa, A. (2013). Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. International Journal of Food Science and Technology, 48(4), 843–849. https://doi.org/10.1111/ijfs.12035 DOI: https://doi.org/10.1111/ijfs.12035
Viernesa, L. B. G., Garcia, R. N., Torio, M. A. O., & Angelia, M. R. N. (2012).
Antihypertensive peptides from vicilin, the major storage protein of mung bean (Vigna radiata (L.) R. wilczek). Journal of Biological Sciences, 12(7), 1–7. https://doi.org/10.3923/jbs.2012.393.399 DOI: https://doi.org/10.3923/jbs.2012.393.399
Wang, M., Jiang, L., Li, Y., Liu, Q., Wang, S., & Sui, X. (2011). Optimization of extraction process of protein isolate from mung bean. Procedia Engineering, 15, 5250–5258. https://doi.org/10.1016/j.proeng.2011.08.973 DOI: https://doi.org/10.1016/j.proeng.2011.08.973
Xia, J., Song, H., Huang, K., Li, S., & Guan, X. (2020). Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein. Journal of Food Science, 85(6), 1735–1741. https://doi.org/10.1111/1750-3841.15139 DOI: https://doi.org/10.1111/1750-3841.15139
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7(January), 2049. https://doi.org/10.3389/fpls.2016.02049 DOI: https://doi.org/10.3389/fpls.2016.02049
Yi-shen, Z., Shuai, S., & Fitzgerald, R. (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food & Nutrition Research, 62, 1–11. https://doi.org/10.29219/fnr.v62.1290 DOI: https://doi.org/10.29219/fnr.v62.1290
Yousaf, Z., Saleh, N., Ramazan, A., & Aftab, A. (2016). Postharvesting Techniques and Maintenance of Seed Quality. New Challenges in Seed Biology - Basic and Translational Research Driving Seed Technology. https://doi.org/10.5772/64994 DOI: https://doi.org/10.5772/64994
Zheng, Z., Wang, M., Li, J., Li, J., & Liu, Y. (2020). Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Advances, 10(5), 2634–2645. https://doi.org/10.1039/c9ra06468k DOI: https://doi.org/10.1039/C9RA06468K
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 F.C. Arámbula-Castillo, M. Zegbe-Rodríguez, C. Rivas-Morales, D.G. García-Hernández , E.D. Cabello-Ruiz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
a. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Atribución 4.0 Internacional. que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
b. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
c. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) posterior al proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado.