Caracterización bioquímica de lipasas presentes en vísceras del mero rojo (Epinephelus morio)

Autores/as

  • J.C. Arceo-Cabrera Universidad Autónoma de Yucatán
  • S.M. Gallegos-Tintoré Universidad Autónoma de Yucatán
  • M.N. Sánchez-Gonzáles Universidad Autónoma de Yucatán

DOI:

https://doi.org/10.29105/idcyta.v8i1.99

Palabras clave:

Enzimas, lipasas, vísceras, caracterización, ciego pilórico

Resumen

Las actividades lipolíticas, perfil electroforético y estabilidad de la actividad lipolítica fueron estudiadas en los tejidos de páncreas y ciego pilórico de la especie Epinephelus morio con el fin de aprovechar los residuos de la industria pesquera. La lipasa se encuentra en un peso molecular estimado de 24.05 kDa para el ciego pilórico y 23.56 kDa para el páncreas y el pH óptimo de actividad fue 8. Considerando estas características los extractos enzimáticos de las vísceras con actividad lipolítica pueden ser candidatos para ciertas industrias como la de detergentes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alfonso Alvarez-González, C., Cuzon, G. Y., & Gaxiola, G. (n.d.). Protein digestibility by in vitro and in vivo methods in red grouper Epinephelus morio. https://www.researchgate.net/publication/260336458

Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, 43(4), 726–745. https://doi.org/10.1111/j.1365-2621.2006.01513. DOI: https://doi.org/10.1111/j.1365-2621.2006.01513.x

Bradford M.M. (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal Biochem; 72:248-254 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Castillo, A., Alvarez, A., Cuzon, G., Suárez, J., & Gaxiola, G. (2018). Glycemic response after glucose oral administration of wild juvenile red grouper Epinephelus morio fed two different diets. Fish Physiology and Biochemistry, 44(1), 219–226. https://doi.org/10.1007/s10695-017-0426-4 DOI: https://doi.org/10.1007/s10695-017-0426-4

Coleman, F. C., Koenig, C. C., Scanlon, K. M., Heppell, S., Hep-Pell, S., & Miller, M. W. (2010). Benthic Habitat Modification through Excavation by Red Grouper, Epinephelus morio, in the Northeastern Gulf of Mexico. In The Open Fish Science Journal (Vol. 3). DOI: https://doi.org/10.2174/1874401X01003010001

Collins, L. A., Fitzhugh, G. R., Lombardi-Carlson, L. A., Lyon, H. M., Walling, W. T., & Oliver, D. W. (2002a). Characterization of red grouper (Serranidae: Epinephelus morio) reproduction from the eastern Gulf of Mexico.

Daboor, S. M., Budge, S. M., Ghaly, A. E., Brooks, M. S., & Dave, D. (2012a). Isolation and activation of collagenase from fish processing waste. Advances in Bioscience and Biotechnology, 03(03), 191–203. https://doi.org/10.4236/abb.2012.33028 DOI: https://doi.org/10.4236/abb.2012.33028

Echazabal-Salazar, O., Morales-Bojórquez, E., & Arreguín-Sánchez, F. (2021a). Biomass dynamic model for multiple data series: An improved approach for the management of the red grouper (Epinephelus morio) fishery of the Campeche Bank, Mexico. Regional Studies in Marine Science, 47, 101962. https://doi.org/10.1016/j.rsma.2021.101962 DOI: https://doi.org/10.1016/j.rsma.2021.101962

Gajanan, P. G., Elavarasan, K., & Shamasundar, B. A. (2016). Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environmental Science and Pollution Research, 23(24), 24901–24911. https://doi.org/10.1007/s11356-016-7618-9 DOI: https://doi.org/10.1007/s11356-016-7618-9

Guérard, F., Sellos, D., & le Gal, Y. (2005). Fish and shellfish upgrading, traceability. In Advances in Biochemical Engineering/Biotechnology (Vol. 96, pp. 127–163). https://doi.org/10.1007/b135783 DOI: https://doi.org/10.1007/b135783

Haard, N. F., & Simpson, B. K. (1994). Proteases from aquatic organisms and their uses in the seafood industry. Fisheries Processing, 132–154. https://doi.org/10.1007/978-1-4615-5303-8_6 DOI: https://doi.org/10.1007/978-1-4615-5303-8_6

Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: An overview. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 118(1–3), 155–170. https://doi.org/10.1385/ABAB:118:1-3:155 DOI: https://doi.org/10.1385/ABAB:118:1-3:155

Hsieh, C. H., Shiau, C. Y., Su, Y. C., Liu, Y. H., & Huang, Y. R. (2016). Isolation and characterization of collagens from the skin of giant grouper (Epinephelus lanceolatus). Journal of Aquatic Food Product Technology, 25(1), 93–104. https://doi.org/10.1080/10498850.2013.828145 DOI: https://doi.org/10.1080/10498850.2013.828145

Johnston, M. W., & Bernard, A. M. (2017). A bank divided: quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico. Marine Biology, 164(1). https://doi.org/10.1007/s00227-016-3038-0 DOI: https://doi.org/10.1007/s00227-016-3038-0

Kuepethkaew, S., Sangkharak, K., Benjakul, S., & Klomklao, S. (2017). Laundry detergent-stable lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas: Effect of extraction media and biochemical characterization. International Journal of Food Properties, 20(4), 769–781. https://doi.org/10.1080/10942912.2016.1180534 DOI: https://doi.org/10.1080/10942912.2016.1180534

Kurtovic, I., Marshall, S. N., Zhao, X., & Simpson, B. K. (2009). Lipases from mammals and fishes. Reviews in Fisheries Science, 17(1), 18–40. https://doi.org/10.1080/10641260802031322 DOI: https://doi.org/10.1080/10641260802031322

Nurdiani, R., Dissanayake, M., Street, W. E., Donkor, O. N., Singh, T. K., & Vasiljevic, T. (2015). Sustainable use of marine resources - turning waste into food ingredients. International Journal of Food Science and Technology, 50(11), 2329–2339. https://doi.org/10.1111/ijfs.12897 DOI: https://doi.org/10.1111/ijfs.12897

Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680–685 DOI: https://doi.org/10.1038/227680a0

Patchimpet, J., Sangkharak, K., & Klomklao, S. (2019). Lipolytic activity of viscera extract from three freshwater fish species in Phatthalung, Thailand: Comparative studies and potential use as dishwashing detergent additive. Biocatalysis and Agricultural Biotechnology, 19(April), 101143. https://doi.org/10.1016/j.bcab.2019.101143 DOI: https://doi.org/10.1016/j.bcab.2019.101143

Patton, J. S., Nevenzel, J. C., & Benson, A. A. (1975). Specificity of digestive lipases in hydrolysis of wax esters and triglycerides studied in anchovy and other selected fish. Lipids, 10(10), 575–583. https://doi.org/10.1007/BF02532720 DOI: https://doi.org/10.1007/BF02532720

Peixoto, S. B., Cladera-Olivera, F., Daroit, D. J., & Brandelli, A. (2011). Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish. Aquaculture Research, 42(6), 887–891. https://doi.org/10.1111/j.1365-2109.2010.02727.x DOI: https://doi.org/10.1111/j.1365-2109.2010.02727.x

Rodriguez, Y. E., Sacristán, H. J., Laitano, M. V., López-Greco, L. S., & Fernández--Gimenez, A. v. (2019). From fish-processing waste to feed additives for crayfish. Journal of the World Aquaculture Society, 50(5), 954–968. https://doi.org/10.1111/jwas.12585 DOI: https://doi.org/10.1111/jwas.12585

Sae-leaw, T., & Benjakul, S. (2018). Lipase from liver of seabass (Lates calcarifer): Characteristics and the use for defatting of fish skin. Food Chemistry, 240(February 2017), 9–15. https://doi.org/10.1016/j.foodchem.2017.07.089 DOI: https://doi.org/10.1016/j.foodchem.2017.07.089

Sindhu, R., Shiburaj, S., Sabu, A., Fernandes, P., Singhal, R., Mathew, G. M., Nair, I. C., Jayachandran, K., Vidya, J., de Souza Vandenberghe, L. P., Deniz, I., Madhavan, A., Binod, P., Sukumaran, R. K., Kumar, S. S., Anusree, M., Nagavekar, N., Soumya, M., Jayakumar, A. Pandeyl, A. (2020). Enzyme Technology in Food Processing: Recent Developments and Future Prospects. In Innovative Food Processing Technologies: A Comprehensive Review (pp. 191–215). Elsevier. https://doi.org/10.1016/b978-0-12-815781-7.00016-0 DOI: https://doi.org/10.1016/B978-0-12-815781-7.00016-0

Smichi, N., Gargouri, Y., Miled, N., & Fendri, A. (2013). A grey mullet enzyme displaying both lipase and phospholipase activities: Purification and characterization. International Journal of Biological Macromolecules, 58, 87–94. https://doi.org/10.1016/j.ijbiomac.2013.03.056 DOI: https://doi.org/10.1016/j.ijbiomac.2013.03.056

Soldo, B., Šimat, V., Vlahović, J., Skroza, D., Ljubenkov, I., & Generalić Mekinić, I. (2019). High Quality Oil Extracted from Sardine By-Products as an Alternative to Whole Sardines: Production and Refining. European Journal of Lipid Science and Technology, 121(7). https://doi.org/10.1002/ejlt.201800513 DOI: https://doi.org/10.1002/ejlt.201800513

Descargas

Publicado

2023-07-17

Cómo citar

Arceo-Cabrera, J. ., Gallegos-Tintoré, S. ., & Sánchez-Gonzáles, M. . (2023). Caracterización bioquímica de lipasas presentes en vísceras del mero rojo (Epinephelus morio) . Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 768–773. https://doi.org/10.29105/idcyta.v8i1.99