Extracción de compuestos bioactivos a partir de los subproductos de la tuna (Opuntia ficus-indica spp.): Tendencias y aplicaciones recientes en alimentos

Authors

  • C.Y. Lazcano-Hernández Universidad Autónoma del Estado de Hidalgo
  • A.A. Hernández-Hernández Universidad Autónoma del Estado de Hidalgo
  • L. García-Curiel Universidad Autónoma del Estado de Hidalgo
  • E. Pérez-Escalante Universidad Autónoma del Estado de Hidalgo
  • E. Contreras-López Universidad Autónoma del Estado de Hidalgo
  • J.G. Pérez-Flores Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.29105/idcyta.v8i1.101

Keywords:

prickly pear, extraction methods, bioactive compounds

Abstract

Prickly pear is a fruit produced by Opuntia ficus-indica spp., a shrub that belongs to the cacti family and that plays an important agronomic role worldwide. Currently, the primary production and industrialization of prickly pear generates large amounts of by-products, such as mechanically damaged fruits, shells, seeds and bagasse. These by-products generate environmental problems and economic losses because they are not used efficiently, only a minimum part is used as fodder for cattle. Fortunately, in recent years, prickly pear by-products have been pointed as a potential source for the extraction of bioactive compounds, such as phytochemicals and insoluble fibers, which can be used in the development of new foods or natural additives. Other bioactive compounds of interest that can be isolated from prickly pear by-products are fatty acids; antioxidants such as vitamin E, tocopherols, and vitamin C; pigments (betalains) and flavonoids such as rutin and quercetin.

Downloads

Download data is not yet available.

References

Almanza-Merchán, P., & Fischer, G. (2012). Tuna (Opuntia ficus-indica (L.) Miller) en Manual para el cultivo de frutales en el trópico. Produmedios.

Ammar, I., Ennouri, M., & Attia, H. (2015). Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Industrial Crops and Products, 64, 97-104. DOI: https://doi.org/10.1016/j.indcrop.2014.11.030

Astello-García, M. G., Cervantes, I., Nair, V., Santos-Díaz, M. del S., Reyes-Agüero, A., Guéraud, F., … Barba de la Rosa, A. P. (2015). Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. Cultivars with different domestication gradient. Journal of Food Composition and Analysis, 43, 119-130. DOI: https://doi.org/10.1016/j.jfca.2015.04.016

Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A., & Kammoun, R. (2017). Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275-282. DOI: https://doi.org/10.1016/j.foodchem.2017.05.029

Bouazizi, S., Montevecchi, G., Antonelli, A., & Hamdi, M. (2020). Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT, 124, 109155. DOI: https://doi.org/10.1016/j.lwt.2020.109155

Cardenas, A., Higuera-Ciapara, I., & Goycoolea, F. (1997). Rheology and Aggregation of Cactus (Opuntia ficus-indica) Mucilage in Solution. Journal of the Professional Association for Cactus Development, 2.

Chacón-Garza, L. E., Hernández-Cervantes, D., Ventura-Sobrevilla, J. M., Aguirre-Joya (2020). Sensory analysis of jelly from prickly pear cactus fruit (Opuntia ficus indica). RIIIT. Revista Internacional de Investigación e Innovación Tecnológica, 8(44), 1-11.

Chougui, N., Djerroud, N., Naraoui, F., Hadjal, S., Aliane, K., Zeroual, B., & Larbat, R. (2015). Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chemistry, 173, 382-390. DOI: https://doi.org/10.1016/j.foodchem.2014.10.025

Ciriminna, R., Fidalgo, A., Avellone, G., Danzì, C., Timpanaro, G., Locatelli, M., … Pagliaro, M. (2019). Integral Extraction of Opuntia ficus-indica Peel Bioproducts via Microwave-Assisted Hydrodiffusion and Hydrodistillation. ACS Sustainable Chemistry & Engineering, 7(8), 7884-7891. DOI: https://doi.org/10.1021/acssuschemeng.9b00502

Coba, R., Flores, L., Elizabeth, P., & Salazar Llangari, K. (2019). Obtención del colorante natural de tuna (Opuntia ficus- indica) Obtaining natural colorants tuna (Opuntia ficus-indica). Ciencia Digital, Vol. 3, 232-240. DOI: https://doi.org/10.33262/cienciadigital.v3i3.2.729

De Leo, M., Abreu, M. B. D., Pawlowska, A. M., Cioni, P. L., & Braca, A. (2010). Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochemistry Letters, 3(1), 48-52. DOI: https://doi.org/10.1016/j.phytol.2009.11.004

Del-Valle, V., Hernández-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91(4), 751-756. DOI: https://doi.org/10.1016/j.foodchem.2004.07.002

Dueñas, M., & García-Estévez, I. (2020). Agricultural and Food Waste: Analysis, Characterization and Extraction of Bioactive Compounds and Their Possible Utilization. Foods, 9(6), 817. DOI: https://doi.org/10.3390/foods9060817

FAO, Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2018). Ecología del cultivo, manejo y usos del nopal. Roma: Centro Internacional de Investigaciones Agrícolas en Zonas Áridas.

Fideicomiso de Riesgo Compartido. (2017, septiembre 6). La tuna, una fruta muy mexicana. Recuperado 10 de marzo de 2021, de Gobierno de México website: https://www.gob.mx/firco/articulos/la-tuna-una-fruta-muy-mexicana?idiom=es

Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68-87. DOI: https://doi.org/10.1016/j.tifs.2012.03.003

Galanakis, C. M. (2015). The universal recovery strategy. En Food Waste Recovery (pp. 59-81). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-800351-0.00003-1

Goycoolea, F., & Cardenas, A. (2003). Pectins from Opuntia spp.: A short review. Journal of the Professional Association for Cactus Development, 5.

Guevara-Figueroa, T., Jiménez-Islas, H., Reyes-Escogido, M. L., Mortensen, A. G., Laursen, B. B., Lin, L.-W., … Barba de la Rosa, A. P. (2010). Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). Journal of Food Composition and Analysis, 23(6), 525-532. DOI: https://doi.org/10.1016/j.jfca.2009.12.003

Kossori, R. L. E., Villaume, C., Boustani, E. E., Sauvaire, Y., & Méjean, L. (1998). Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant Foods for Human Nutrition, 52(3), 263-270. DOI: https://doi.org/10.1023/A:1008000232406

Koubaa, M., Barba, F. J., Grimi, N., Mhemdi, H., Koubaa, W., Boussetta, N., & Vorobiev, E. (2016). Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innovative Food Science & Emerging Technologies, 37, 336-344. DOI: https://doi.org/10.1016/j.ifset.2016.04.015

Lefsih, K., Giacomazza, D., Dahmoune, F., Mangione, M. R., Bulone, D., San Biagio, P. L., … Madani, K. (2017). Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chemistry, 221, 91-99. DOI: https://doi.org/10.1016/j.foodchem.2016.10.073

Lim, T. K. (2012). Opuntia ficus-indica. En L. T. K., Edible Medicinal and Non-Medicinal Plants (pp. 660-682). Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-90-481-8661-7_94

Lira-Ortiz, A. L., Reséndiz-Vega, F., Ríos-Leal, E., Contreras-Esquivel, J. C., Chavarría-Hernández, N., Vargas-Torres, A., & Rodríguez-Hernández, A. I. (2014). Pectins from waste of prickly pear fruits (Opuntia albicarpa Scheinvar ‘Reyna’): Chemical and rheological properties. Food Hydrocolloids, 37, 93-99. DOI: https://doi.org/10.1016/j.foodhyd.2013.10.018

Manzur-Valdespino, S., Ramírez-Moreno, E., Arias-Rico, J., Jaramillo-Morales, O. A., Calderón-Ramos, Z. G., Delgado-Olivares, L., … Cruz-Cansino, N. del S. (2020). Opuntia ficus-indica L. Mill Residues—Properties and Application Possibilities in Food Supplements. Applied Sciences, 10(9), 3260. DOI: https://doi.org/10.3390/app10093260

Mena, P., Tassotti, M., Andreu, L., Nuncio-Jáuregui, N., Legua, P., Del Rio, D., & Hernández, F. (2018). Phytochemical characterization of different prickly pear (Opuntia ficus-indica (L.) Mill.) cultivars and botanical parts: UHPLC-ESI-MSn metabolomics profiles and their chemometric analysis. Food Research International, 108, 301-308. DOI: https://doi.org/10.1016/j.foodres.2018.03.062

Msaddak, L., Abdelhedi, O., Kridene, A., Rateb, M., Belbahri, L., Ammar, E., … Zouari, N. (2017). Opuntia ficus-indica cladodes as a functional ingredient: Bioactive compounds profile and their effect on antioxidant quality of bread. Lipids in Health and Disease, 16(1), 32. DOI: https://doi.org/10.1186/s12944-016-0397-y

Piga, A. (2004). Cactus Pear: A Fruit of nutraceutical and functional importance. Journal of the Professional Association for Cactus Development, 9-22.

Prakash Maran, J., & Manikandan, S. (2012). Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus-indica) fruit. Dyes and Pigments, 95(3), 465-472. DOI: https://doi.org/10.1016/j.dyepig.2012.06.007

Ramadan, M. F., & Mörsel, J.-T. (2003). Oil cactus pear (Opuntia ficus-indica L.). Food Chemistry, 82(3), 339-345. DOI: https://doi.org/10.1016/S0308-8146(02)00550-2

Saag, L. M. K., Sanderson, G. R., Moyna, P., & Ramos, G. (1975). Cactaceae mucilage composition. Journal of the Science of Food and Agriculture, 26(7), 993-1000. DOI: https://doi.org/10.1002/jsfa.2740260716

Sáenz, C., & Berger, H. (2006). Utilización agroindustrial del nopal. Food & Agriculture Org.

Sáenz, C., Sepúlveda, E., & Matsuhiro, B. (2004). Opuntia spp mucilage’s: A functional component with industrial perspectives. Journal of Arid Environments, 57(3), 275-290. DOI: https://doi.org/10.1016/S0140-1963(03)00106-X

Servicio de Información Agroalimentaria y Pesquera. (2018, junio 11). En 2017, la producción nacional de tuna y xoconostle fue superior a 470 mil toneladas. Recuperado 13 de marzo de 2021, de Gob.mx website: http://www.gob.mx/siap/articulos/en-2017-la-produccion-nacional-de-tuna-y-xoconostle-fue-superior-a-470-mil-toneladas

Silva, N. C., Benites, E. A., & Gomero, J. C. M. (2008). Extracción y caracterización de pectinas obtenidas a partir de frutos de la biodiversidad peruana. Ingeniería Industrial, (26), 175-199. DOI: https://doi.org/10.26439/ing.ind2008.n026.640

Tahir, H. E., Xiaobo, Z., Komla, M. G., & Mariod, A. A. (2019). Nopal Cactus (Opuntia ficus-indica (L.) Mill) as a Source of Bioactive Compounds. En A. A. Mariod, Wild Fruits: Composition, Nutritional Value and Products (pp. 333-358). Cham: Springer Internation DOI: https://doi.org/10.1007/978-3-030-31885-7_26

Published

2023-07-17

How to Cite

Lazcano-Hernández, C. ., Hernández-Hernández, A. ., García-Curiel, L. ., Pérez-Escalante, E. ., Contreras-López, E. ., & Pérez-Flores, J. . (2023). Extracción de compuestos bioactivos a partir de los subproductos de la tuna (Opuntia ficus-indica spp.): Tendencias y aplicaciones recientes en alimentos. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 785–794. https://doi.org/10.29105/idcyta.v8i1.101