Diseño de pretratamientos antioxidantes para el secado de cascara de plátano con infrarrojo y aire caliente

Authors

  • Y. Gutiérrez-Aguirre Tecnológico Nacional de México https://orcid.org/0000-0003-4137-6154
  • C. Ozuna-López Universidad de Guanajuato
  • Ma. Del R. Abraham-Juárez Universidad de Guanajuato
  • M.G.L. Acosta-Castillo Tecnológico Nacional de México
  • M.A. Rocha-Mendoza Tecnológico Nacional de México
  • E. Mares-Mares Tecnológico Nacional de México

DOI:

https://doi.org/10.29105/idcyta.v8i1.106

Keywords:

Peel, banana, antioxidants, drying, infrared

Abstract

The use of agro-industrial by-products such as banana peel is limited by the oxidation of its components, even when emerging technologies are used for product development. The objective was to design an antioxidant pretreatment using the response surface methodology and to dry the shell with hot and infrared air. A Box-behnken design with MiniTab19 was used to establish the concentrations of citric acid, ascorbic acid, and sodium bisulfite according to the limits established by COFEPRIS. The color vector was evaluated with the CIELAB scale. Subsequently, the results were analyzed to optimize the response variable and obtain some flour with maximum luminosity. The optimized concentrations of the additives were applied as pretreatment to drying. According to the results, the best fit model is of the quadratic type with an R2 of 93.8%. The optimum concentrations of the additives were 0.165% citric acid, 0.19% sodium bisulfite and 0.25% ascorbic acid. Likewise, a brighter flour was obtained using infrared drying. In conclusion, a pretreatment with the least number of additives was designed to obtain oxidation-stable plantain peel flour.

Downloads

Download data is not yet available.

References

Angulo, P., Díaz, D., Espinoza, J., Fernández, V., Figueroa, M., y Galarza, A. (2001). Implicaciones farmacológicas y toxicológicas del óxido nítrico en la inflamación intestinal II: enteritis inducida por AINES como modelo experimental para el científico de la flora medicinal peruana. Revista de Ciencias Veterinarias, 17(3), 21-26

Carvajal. M., & Murgueitio. F. (2017). Caracterización de las proteínas de la cascara de plátano tipo Williams (Giant Cavendish) (Tesis pregrado). Universidad de Guayaquil, Ecuador.

Oliveira, A., Barros, C., Silva, E., Henriques M., Paes de Barros, M., Marinho, M., & Fonseca, O. (2009). Total Phenolic content and free radical scavenging activities of methanolic extract powders of tropical frutis residues. Food Chemestry, 115, 469-475. DOI: https://doi.org/10.1016/j.foodchem.2008.12.045

Rivera et al., (2018). “Componentes prebióticos del plátano: fibra dietética y almidón resistente” En Revista Iberoamericana de Ciencias,5 (3), pp. 40-50.

Scheffé, H. (1958). Experiment with mixtures. Journal Royal Statistical Society. 20:344 DOI: https://doi.org/10.1111/j.2517-6161.1958.tb00299.x

Vargas y Vargas, M., Figueroa Brito, H., Tamayo Cortez, J., Toledo López, V., & Moo Huchin, V. (2019). Aprovechamiento de cáscaras de frutas: análisis nutricional y compuestos bioactivos. CIENCIA Ergo-Sum, 26(2). doi:10.30878/ces.v26n2a6 DOI: https://doi.org/10.30878/ces.v26n2a6

Published

2023-07-17

How to Cite

Gutiérrez-Aguirre, Y. ., Ozuna-López, C. ., Abraham-Juárez, M. D. R. ., Acosta-Castillo, M. ., Rocha-Mendoza, M. ., & Mares-Mares, E. . (2023). Diseño de pretratamientos antioxidantes para el secado de cascara de plátano con infrarrojo y aire caliente. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 825–833. https://doi.org/10.29105/idcyta.v8i1.106