Optimización para la extracción de ficocianina de la cianobacteria Spirulina maxima

Authors

  • Carlos Sada-Borrego Universidad Autónoma de Nuevo León
  • Celestino García-Gómez Universidad Autónoma de Nuevo León
  • Claudio Guajardo-Barbosa Universidad Autónoma de Nuevo León
  • Julia Márquez-Reyes Universidad Autónoma de Nuevo León
  • Juan Nápoles-Armenta Universidad Autónoma de Nuevo León
  • Julio Beltrán-Rocha Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/idcyta.v8i1.107

Keywords:

Spirulina, phycocyanin, extraction, temperatue, response surface

Abstract

The use of Spirulina maxima in the formulation of functional foods has risen in recent years due to its beneficial properties in human health. Moreover, the use of phycocyanin from S. maxima is of interest because of its anti-inflammatory, antioxidant and anticarcinogenic activities, acting directly in reducing oxidative stress, apoptosis and inflammatory processes in live models. Nonetheless, one of the problems of its application in food is the optimization of extraction by maximizing concentration and stability, since current methodologies are time-consuming and do not yield enough concentration, making the process costly and demanding. In this work, an extraction method based in phosphate buffer was proposed, due to its simplicity, with the goal of optimizing process parameters (temperature, pH, agitation, solvent ratio and time) in order to maximize extracted phycocyanin concentration, using response surface methodology. Subsequently, the optimal conditions were validated in order to confirm consistency between predicted data and real concentrations.

Downloads

Download data is not yet available.

References

IPSOS. (2018). Nuevas tendencias alimentarias a nivel mundial. Obtenido de: www.ipsos.com

Nielsen. (2016). 8 de cada 10 mexicanos afirma seguir algún tipo de dieta restrictiva. Obtenido de: www.nielsen.com

Grand View Research. (2019). Functional foods market size, share and trend analysis report. Obtenido de: www.grandviewresearch.com

Morançais, M., Mouget, J.-L., & Dumay, J. (2018). Proteins and Pigments. Microalgae in Health and Disease Prevention, 145–175. doi:10.1016/b978-0-12-811405-6.00007-4 DOI: https://doi.org/10.1016/B978-0-12-811405-6.00007-4

Pez Jaeschke, D., Rocha Teixeira, I., Damasceno Ferreira Marczak, L., & Domeneghini Mercali, G. (2021). Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 143, 110314.

Jaeschke, D., Rocha, I., Damasceno, L. & Domeneghini, G. (2021). Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 143(2021), 110314. DOI: https://doi.org/10.1016/j.foodres.2021.110314

Mysliwa, B., Solymosi, K. (2017). Phycobilins and phycobiliproteins used in food industry and medicine. Mini-reviews in Medicinal Chemistry, 17:13(2017), 1173-1193. DOI: https://doi.org/10.2174/1389557516666161004161411

Li, Y., Zhang, Z., Paciulli, M. & Abbaspourrad, A. (2020). Extraction of phycocyanin – A natural blue colorant from dried spirulina biomass: Influence on processing parameters and extraction techniques. Journal of Food Science, 00(2020), 0. DOI: https://doi.org/10.1111/1750-3841.14842

Wu, H., Wang, G., Xiang, W., Li, T. & Hui, H. (2016). Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties, 19(2016), 2349-2362. DOI: https://doi.org/10.1080/10942912.2015.1038564

Zhou, Z., Liu, L., Chen, X. Factors that affect antioxidant activity of C-phycocyanins from Spirulina platensis. Journal of Food Biochemistry. 29(3), 313-322. DOI: https://doi.org/10.1111/j.1745-4514.2005.00035.x

Colla, L., Bertol, C., Ferreria, D., Bavaresco, J., Costa, J., Bertolin, T. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Brazilian Journal of Biology. 77(2), 332-339. DOI: https://doi.org/10.1590/1519-6984.14315

Su, C., Liu, C., Yang, P., Syu, K., Chiuh, C. (2014). Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Separation and Purification Technology, 123, 64-68. DOI: https://doi.org/10.1016/j.seppur.2013.12.026

Published

2023-07-17

How to Cite

Sada-Borrego , C., García-Gómez, . C., Guajardo-Barbosa , C., Márquez-Reyes, . J., Nápoles-Armenta, . J., & Beltrán-Rocha, . J. (2023). Optimización para la extracción de ficocianina de la cianobacteria Spirulina maxima . Revista Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), 834–840. https://doi.org/10.29105/idcyta.v8i1.107