Evaluación de los compuestos bioactivos del aceite de romero (Rosmarinus officinalis L.) como conservador alternativo
DOI:
https://doi.org/10.29105/idcyta.v8i1.118Keywords:
Rosemary oil, Antioxidant, Ligands, molecular dockingAbstract
In the present work, the evaluation of some of the bioactive compounds of the essential oil of rosemary (Rosmarinus officinalis L.) was developed as an alternative for food preservation. The evaluation of the compounds was carried out with the Molegro Virtual Doker software. The ligands and the selected biological target (borneol dehydrogenase from Salvia rosmarinus with NAD+ as a cofactor) were evaluated to determine the antioxidant and antimicrobial effect of the compounds. Specifically, they were working with the molecules of bornyl acetate, carnosic acid, rosmaric acid, camphor, alpha-pinene, and carnosol (phytochemicals from rosemary), which interacted with the biological target that was borneol dehydrogenase from Salvia rosmarinus. It was shown that bornyl acetate has a more favorable interaction, having a more negative ligand efficiency than the others, -6.09 kcal/mol.
Downloads
References
Ali, A., Chua, B. L. & Chow, Y. H. (2019). An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. Trends in Analytical Chemistry, 188, 338-351. DOI: https://doi.org/10.1016/j.trac.2019.05.040
Angioni, A., Barra,A., Cereti,E., Barile,D., Coïsson,J. D., Arlorio,M., Dessi,S., Coroneo, V & Cabras, P, (2004). Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J Agr Food Chem. 2004 (11): 3530 -3535. DOI: https://doi.org/10.1021/jf049913t
Basheer, A. I. (2018). Effect of alcoholic extract of rosmarinus against some type of enterobacteriaceae. Tikrit Journal of Pure Science, 23, 18-21. DOI: https://doi.org/10.25130/tjps.v23i7.689
Beuchat,L.R. (2001). Control of foodborne pathogens and spoilage microorganisms by naturally occurring antimicrobials. En: Microbial Food Contamination. Wilson CL, S Droby. (Ed.). CRC Press. London, UK. Chap. 11: 149-169. DOI: https://doi.org/10.1201/9781420039030.ch11
Borges, R. S., Sánchez, B. L., Matias, A. C., Keita, H. & Tavares, J. C. (2018). Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. Journal of Ethnopharmacology, 229, 29-45. DOI: https://doi.org/10.1016/j.jep.2018.09.038
Brown, N., John, J. A. & Shahidi, F. (2019). Polyphenol composition and antioxidant potential of mint leaves. Food Production, Processing and Nutrition,1(1): 1-14. DOI: https://doi.org/10.1186/s43014-019-0001-8
Castano P, Hader I; Ciro G, Gelmy; Zapata M, José E & Jimenez R, Silvia L, (2010). Actividad bactericida del extracto etanólico y del aceite esencial de hojas de Rosmarinus Officinalis l. sobre algunas bacterias de interés alimentario. SciELO,17(2):149-154.
Ebrahimi, E., Haghjou, M., Nematollahi, A. & Goudarzian, F. (2020). Effects of rosemary essential oil on growth performance and hematological parameters of young great sturgeon (Huso huso). Aquaculture, 521, 1-6. DOI: https://doi.org/10.1016/j.aquaculture.2019.734909
Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., Chaouch, M. & Eloutassi, N. (2019). Extraction of essential oils of Rosmarinus officinalis L. by two different methods: Hydrodistillation and Microwave assisted hydrodistillation. The Scientific World Journal, 1-7. DOI: https://doi.org/10.1155/2019/3659432
Hammer, K.A., Carson, C.F & Riley, T.V, (1999). Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86 (6): 985-990. DOI: https://doi.org/10.1046/j.1365-2672.1999.00780.x
Huang, M., Wang, H., Song, X & Zhou, G. (2020). Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-Llysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocolloids, 102, 1-9. DOI: https://doi.org/10.1016/j.foodhyd.2019.105576
Sik, B., Hanczné, E. L., Kapcsándi, V. & Ajtony, Z. (2020). Conventional and nonconventional extraction techniques for optimal extraction processes of rosmarinic acid from six Lamiaceae plants as determined by HPLCDAD measurement. Journal of Pharmaceutical and Biomedical Analysis, 184, 1-8. DOI: https://doi.org/10.1016/j.jpba.2020.113173
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Isela Contreras-Hernández, Marco A. Castillo-Campohermoso, Erik Díaz-Cervantes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
a. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Atribución 4.0 Internacional. que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
b. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
c. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) posterior al proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado.