Optimización de métodos de extracción de R-Ficoeritrina a partir de Porphyridium cruentum

Authors

  • E. Garza-Valverde Universidad Autónoma de Nuevo León
  • S.A. Cortez-Guardiola Universidad Autónoma de Nuevo León
  • M.F. Guzmán-Rodríguez Universidad Autónoma de Nuevo León
  • J.A. Vidales-Contreras Universidad Autónoma de Nuevo León
  • C. García-Gómez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/idcyta.v8i1.15

Keywords:

Microalgae, optimization, purity

Abstract

Microalgae are natural, valuable products with the potential to cover food needs. R-Phycoerythrin (R-PE) is a pigment obtained from the microalgae P. cruentum that has gained interest as a pink colorant in foods. Therefore, this research focused on optimizing extraction methods. Response Surface Methodology (RSM) was obtained with a central composite design and three central points to evaluate the influence of homogenization time, concentration and buffer volume in obtaining R-PE and a high purity index (PI). The methods evaluated were maceration, maceration with ultrasonic bath and combined maceration with an ultrasonic probe. The optimal conditions for maceration were 10 min of homogenization and 3 mL of 0.1 M buffer, for maceration with ultrasonic bath they were 5 min of homogenization with 3 mL of 0.1 M buffer and for maceration with ultrasonic probe they were 7.9 min of homogenization with 5.7 mL of 0.8 M buffer. The results showed the potential of R-PE extraction methods to be used as a natural dye.

Downloads

Download data is not yet available.

References

Association of Official Analytical Chemists – AOAC. (1998). Official Methods of Analysis of Association of Official Analytical Chemists (15th ed.). Washington: ADAC International.

Bermejo, R., Alvárez-Pez, J. M., Acién F., F. G. & Molina G., E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93, 73-85. DOI: https://doi.org/10.1016/S0168-1656(01)00385-6

Bligh, G. E. & Dyer, J. W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. DOI: https://doi.org/10.1139/o59-099

Bradford, M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Caporgno, M. & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in nutrition, 5, 1-10. DOI: https://doi.org/10.3389/fnut.2018.00058

Durmaz, Y., Kilicli, M., Toker, O., Konar, N., Palabiyik, I. & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 1-8. DOI: https://doi.org/10.1016/j.algal.2020.101811

García, A., Longo, E., Murillo, M. & Bermejo, R. (2021). Using a B-Phycoerythrin Extract as a Natural Colorant: Application in Milk-Based Products. Molecules, 26, 1-13. DOI: https://doi.org/10.3390/molecules26020297

Guillard, R.R.L. (1975). Culture of Phytoplankton for Feeding Marine Invertebrates. Cultures of Marine Invertebrate Animals. Plenum Press. 26-60 pp. DOI: https://doi.org/10.1007/978-1-4615-8714-9_3

Humphrey, G. F. (1979). Photosynthetic characteristics of algae grown under constant illumination and light dark regimes. Journal of Experimental Marine Biology and Ecology, 40, 63-70. DOI: https://doi.org/10.1016/0022-0981(79)90034-0

Jeffrey, S. W. and Humphrey, G. F. (1975). New spectrophotometric equation for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochimie and Physiology Pflanze, 167, 191-194. DOI: https://doi.org/10.1016/S0015-3796(17)30778-3

Levasseur, W., Perré, P. & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41, 1-23. DOI: https://doi.org/10.1016/j.biotechadv.2020.107545

Li, W., Pu, Y., Tang, Z., Zhao, F., Xie, M. & Qin, S. (2020). Energy transfer dynamics in B-phycoerythrin from the red alga Porphyridium purpureum. Chinese Journal of Physics, 66, 24-35. DOI: https://doi.org/10.1016/j.cjph.2020.03.025

Mittal, R., Tavanandi, H. A., Mantri, V. A., & Raghavarao, K. S. M. S. (2017). Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrasonics Sonochemistry, 38, 92-103. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.030

Paggi, A. (2019). Microalgae as a Potential Source of Proteins (Elsevier). Proteins: Sustainable Source, Processing and Applications (p. 70-73).

Pereira, T., Barroso, S., Mendes, S. and Gil, M. M. (2020). Stability, kinetics, and application study of phycobiliprotein pigments extracted from red algae Gracilaria gracilis. Journal of Food Science, 0, 1-5. DOI: https://doi.org/10.1016/j.foodchem.2020.126688

Simovic, A., Combet, S., Velickovic, T. C., Nikolic, M. & Minic, S. (2022). Probing the stability of the food colourant R-phycoerythrin from dried Nori flakes. Food Chemistry, 374, 1-10. DOI: https://doi.org/10.1016/j.foodchem.2021.131780

Strickland, J. D. and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Pigments analysis. Spectrophotometric determination of chlorophylls and total carotenoids. Fish Resource Building Canada Bulletin, 167, 185-199.

Yemm, E. W. & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemistry, 57, 508-514. DOI: https://doi.org/10.1042/bj0570508

Published

2023-07-17

How to Cite

Garza-Valverde, E. ., Cortez-Guardiola, S. ., Guzmán-Rodríguez, M. ., Vidales-Contreras, J. ., & García-Gómez, C. . (2023). Optimización de métodos de extracción de R-Ficoeritrina a partir de Porphyridium cruentum. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 73–83. https://doi.org/10.29105/idcyta.v8i1.15