Extracción de ficocianina para uso como colorante natural: optimización por metodología de superficie de respuesta

Authors

  • Y.A. Ruiz-Hernández Universidad Autónoma de Nuevo León
  • E. Garza-Valverde Universidad Autónoma de Nuevo León
  • J.R Márquez-Reyes Universidad Autónoma de Nuevo León
  • C. García-Gómez Universidad Autónoma de Nuevo León

DOI:

https://doi.org/10.29105/idcyta.v8i1.16

Keywords:

Microalgae, cyanobacteria, phycocyanin, extraction, pigment

Abstract

The application of Spirulina maxima for food formulation using it as a pigment has increased in recent years due to its properties and health benefits. In addition, the use of phycocyanin is of interest for its anti-inflammatory, antioxidant and anticancer effects, acting directly on the reduction of oxidative stress, apoptosis and inflammatory processes in in vivo models. However, one of the problems with the use of phycocyanin in food is to optimize the extraction at maximum concentration and with good stability. In this study, an extraction method in phosphate buffer with agitation was used with the objective of optimizing process parameters such as pH, amount of biomass and buffer concentration to maximize the concentration of extracted phycocyanin, purity and obtaining powders of commercial interest, using a response surface analysis. The study showed that an increase in the amount of biomass and low concentration of extraction buffer potentiated the production of phycocyanin, these results lead to the use of natural colorants in the food industry.

Downloads

Download data is not yet available.

References

Acker, J. P., & McGann, L. E. (2003). Protective effect of intracellular ice during freezing? Cryobiology, 46(2), 197–202. https://doi.org/10.1016/S0011-2240(03)00025-7. DOI: https://doi.org/10.1016/S0011-2240(03)00025-7

Antelo, F. S., Anschau, A., Costa, J. A. V., & Kalil, S. J. (2010). Extraction and purification of C-phycocyanin from Spirulina platensis in conventional and integrated aqueous two-phase systems. Journal of the Brazilian Chemical Society, 21(5), 921–926. https://doi.org/10.1590/s0103-50532010000500022 DOI: https://doi.org/10.1590/S0103-50532010000500022

Belay, A. (2002). The potential application of Spirulina as a nutricional and therapeutic supplement in health management. JANA, 5: 27-48

Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659–664. https://doi.org/10.1016/J.PROCBIO.2012.01.010. DOI: https://doi.org/10.1016/j.procbio.2012.01.010

Chentir, I., Hamdi, M., Li, S., Doumandji, A., Markou, G., & Nasri, M. (2018). Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Research, 35, 395–406. https://doi.org/ 10.1016/J.ALGAL.2018.09.013. DOI: https://doi.org/10.1016/j.algal.2018.09.013

Fernández-Rojas, B., Hernández-Juárez, J., & Pedraza-Chaverri, J. (2014). Nutraceutical properties of phycocyanin. Journal of Functional Foods, 11, 375–392. https://doi.org/ 10.1016/J.JFF.2014.10.011. DOI: https://doi.org/10.1016/j.jff.2014.10.011

Ilter, I., Akyıl, S., Demirel, Z., Koç, M., Conk-Dalay, M., & Kaymak-Ertekin, F. (2018). Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis, 70, 78–88. https://doi.org/ 10.1016/J.JFCA.2018.04.007. DOI: https://doi.org/10.1016/j.jfca.2018.04.007

Ponce-López, E. (2013). Superalimento para un mundo en crisis: Spirulina a bajo costo. Idesia (Arica), 31(1), 135-139.

https://dx.doi.org/10.4067/S0718-34292013000100016 DOI: https://doi.org/10.4067/S0718-34292013000100016

Roquebert, M. F., & Bury, E. (1993). Effect of freezing and thawing on cell membranes of Lentinus edodes, the shiitake mushroom. World Journal of Microbiology & Biotechnology, 9(6), 641–647. https://doi.org/10.1007/BF00369571. DOI: https://doi.org/10.1007/BF00369571

Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V., & Kalil, S. J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629–1634. https://doi.org/10.1016/j. biortech.2006.05.050. DOI: https://doi.org/10.1016/j.biortech.2006.05.050

Su, C. H., Liu, C. S., Yang, P. C., Syu, K. S., & Chiuh, C. C. (2014). Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors. Separation and Purification Technology, 123, 64–68. https://doi.org/10.1016/j. seppur.2013.12.026. DOI: https://doi.org/10.1016/j.seppur.2013.12.026

Tiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/J.TRAC.2015.04.013. DOI: https://doi.org/10.1016/j.trac.2015.04.013

Vali Aftari, R. O. C. and P. of S. platensis C.-P. A. C. S. on M.-A. and U.-A. E. M., Rezaei, K., Mortazavi, A., & Bandani, A. R. (2015). The Optimized Concentration and Purity of Spirulina platensis C-Phycocyanin: A Comparative Study on Microwave-Assisted and Ultrasound-Assisted Extraction Methods. Journal of Food Processing and Preservation, 39(6), 3080–3091. https://doi.org/10.1111/jfpp.12573. DOI: https://doi.org/10.1111/jfpp.12573

Zhejiang Binmei Biotecnología Co., Ltd. (2018). Extracción de C-Ficocianina de la biomasa húmeda de Spirulina Platensis - Conocimiento - Zhejiang Binmei Biotechnology Co., Ltd. http://www.binmeibio-es.com/info/c-phycocyanin-extraction-from-spirulina-platen-23885015.html

Published

2023-07-17

How to Cite

Ruiz-Hernández, Y., Garza-Valverde, E., Márquez-Reyes, . J., & García-Gómez, C. (2023). Extracción de ficocianina para uso como colorante natural: optimización por metodología de superficie de respuesta . Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 84–91. https://doi.org/10.29105/idcyta.v8i1.16