Aplicaciones de ozono como tecnología postcosecha en fresa (Fragaria x ananassa Duch.): impacto en la calidad microbiológica del fruto

Authors

  • C.M. Tinajero-Castro Universidad de Guanajuato
  • E.P. Trejo-Nava Universidad de Guanajuato
  • C.G.M. Barajas-Díaz Ozono Carbar’s
  • C. Ozuna Universidad de Guanajuato

DOI:

https://doi.org/10.29105/idcyta.v8i1.36

Keywords:

Storage, berries, postharvest quality, non-thermal technologies

Abstract

Strawberry is a fruit of great global importance thanks to its organoleptic and nutritional properties. However, its shelf life is short, even in refrigeration, due to its high respiration rate and susceptibility to fungal attack. This fact makes it difficult to transport strawberries from the production/processing site to the consumer. Ozone has been shown to be a gas with antimicrobial properties that can extend the shelf life of strawberries. The objective of this review was to investigate the advances in the application of ozone in strawberries as a postharvest technology and its impact on the microbiological quality of the fruit. Articles published in the last ten years that investigate the application of ozone to reduce the microbiological load in strawberries were reviewed. The results of the reviewed studies show that postharvest treatment of strawberries with ozone can be used to prolong their shelf life and protect them from microbial contamination. It is recommended to carry out a preliminary study of the treatment conditions for each product potentially treatable with ozone, as well as to carry out a comprehensive analysis of the product management system to achieve a greater impact and feasibility of applying this post-harvest technology.

Downloads

Download data is not yet available.

References

Aday, M. S., Büyükcan, M. B., Temizkan, R., Caner, C. (2014). Role of ozone concentrations and exposure times in extending shelf-life of strawberry. Ozone: Science & Engineering, 36 (1), 43–56. DOI: https://doi.org/10.1080/01919512.2013.833851

Alexandre, E., Santos-Pedro, D. M., Brandão, T., Silva, C. (2011). Influence of aqueous ozone, scalding and treatments combined in the microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering. 105 (2), 277–282. DOI: https://doi.org/10.1016/j.jfoodeng.2011.02.032

Alexandre, E., Brandão, T. Silva, C. (2012). Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. Journal of Food Engineering, 108: 417–426. DOI: https://doi.org/10.1016/j.jfoodeng.2011.09.002

Alves, H., Alencar, E. R., Ferreira, W. F. S., Silva, C. R., & Ribeiro, J. L. (2019). Microbiological and physical-chemical aspects of strawberry exposed to ozone gas at different concentrations during storage. Brazilian Journal of Food Technology, 22, 1-12. DOI: https://doi.org/10.1590/1981-6723.00218

Bialka, K. L., Demirci, A., & Puri, V. M. (2008). Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV light. Journal of Food Engineering. 85(3): 444-449. DOI: https://doi.org/10.1016/j.jfoodeng.2007.08.007

Concha-Meyer, A., Eifert, J. D., Williams, R. C., Marcy, J. E., Welbaum, G. E. (2015). Shelf-life determination of fresh blueberries (Vaccinium corymbosum) stored under controlled atmosphere and ozone. International Journal of Food Science, 1-9. DOI: https://doi.org/10.1155/2015/164143

Contigiani, E. V., Jaramillo-Sánchez, G. M. Castro, M. A., Gómez, P. L., Alzamora, S, M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11 (9), 1639-1650. DOI: https://doi.org/10.1007/s11947-018-2127-0

Contigiani, E. V., Kronberg, M. F., Jaramillo-Sánchez, G., Gómez, P. L., García-Loredo, A. B., Munarriz, E., Alzamora, S. M. (2020). Ozone washing decreases strawberry susceptibility to Botrytis cinerea while maintaining antioxidant, optical and sensory quality. Heliyon, 6 (11). DOI: https://doi.org/10.1016/j.heliyon.2020.e05416

Crowe, K. M., Bushway, A., Davis-Dentici, K. (2012). Impact of postharvest treatments, chlorine and ozone, coupled with low-temperature frozen storage on the antimicrobial quality of lowbush blueberries (Vaccinium angustifolium). Food Science and Technology, 47 (1), 213-215. DOI: https://doi.org/10.1016/j.lwt.2011.12.026

Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B., Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28 (1), 9-19. DOI: https://doi.org/10.1016/j.nut.2011.08.009

Giuggioli, N., Briano, R., Girgenti, V., Peano, C. (2015). Quality effect of ozone treatment for the red raspberries storage. Chemical Engineering Transactions, 44, 25-30.

González-Razo, F. D. J., Rebollar-Rebollar, S., Hernández-Martínez, J., Morales-Hernández, J. L., Abarca-Ramírez, O. (2019). Situación actual y perspectivas de la producción de berries en México. Revista Mexicana de Agronegocios, 44 (1), 260-272.

Han, Q., Gao, H., Chen, H., Fang, X., Wu, W. (2017). Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chemistry, 221, 1947-1953. DOI: https://doi.org/10.1016/j.foodchem.2016.11.152

Horvitz, S., Cantalejo, M. J. (2014). Application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 54 (3), 312–339. DOI: https://doi.org/10.1080/10408398.2011.584353

Jaramillo-Sánchez, G., Contigiani, E. V., Castro, M. A., Hodara, K., Alzamora, S. M., García-Loredo, A., Nieto, A. B. Nieto. (2019). Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest using ozone in aqueous phase: microbiological, structure, and mechanical issues. Food and bioprocess technology, 12, 2136-2147. DOI: https://doi.org/10.1007/s11947-019-02358-z

Nakata, J., Uzimi, H. (2020). Microbiological and quality responses of strawberry fruit to high CO2, CA and MA storage. HortScience, 55 (3), 649-690. DOI: https://doi.org/10.21273/HORTSCI14771-19

Nayak, S. L., Sethi, S., Sharma, R. R., Sharma, R. M., Singh, S., Singh, D. (2020). Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria × ananassa Duch.). Journal of Food Science and Technology, 57 (1), 319-326. DOI: https://doi.org/10.1007/s13197-019-04063-3

Onopiuk, A., Półtorak, A., Moczkowska, M., Szpicer, A., & Wierzbicka, A. (2017). The impact of ozone on health-promoting, microbiological, and colour properties of Rubus ideaus raspberries. CyTA-Journal of Food, 15 (4), 563-573. DOI: https://doi.org/10.1080/19476337.2017.1317669

Panou, A. A., Akrida-Demertzi, K., Demertzis, P., Riganakos, K. A. (2021). Effect of gaseous ozone and heat treatment on the quality and shelf life of fresh strawberries during cold storage. International Journal of Fruit Science, 21 (1), 218 -231. DOI: https://doi.org/10.1080/15538362.2020.1866735

Romanazzi, G., Smilanick, J. L., Feliziani, E., Droby, S. (2016). Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, 113, 69-76. DOI: https://doi.org/10.1016/j.postharvbio.2015.11.003

Thompson, A. K. (2018). Effects and interactions of CA storage. En A. K. Thompson, Controlled atmosphere storage of fruits and vegetables (pp. 11-24). Londres: CABI. DOI: https://doi.org/10.1079/9781845936464.0011

Xu, Y., Charles, M.T., Luo, Z., Mimee, B., Chao, T, Veronneau, P.Y., Rolland, D., Roussel, D. (2019). Ultraviolet-C priming of strawberry leaves against subsequent Mycosphaerella fragariae infection involves the action of reactive oxygen species, plant hormones, and terpenes. Plant Cell Environ, 42, 815–831. DOI: https://doi.org/10.1111/pce.13491

Zhu, F. (2018). Effect of ozone treatment on the quality of grain products. Food Chemistry, 264, 358-366. DOI: https://doi.org/10.1016/j.foodchem.2018.05.047

Published

2023-07-17

How to Cite

Tinajero-Castro, C. ., Trejo-Nava, E. ., Barajas-Díaz, C. ., & Ozuna, C. . (2023). Aplicaciones de ozono como tecnología postcosecha en fresa (Fragaria x ananassa Duch.): impacto en la calidad microbiológica del fruto. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 257–265. https://doi.org/10.29105/idcyta.v8i1.36