Métodos para evaluar la biodisponibilidad, la bioaccesibilidad y el valor nutricional de suplementos alimenticios
DOI:
https://doi.org/10.29105/idcyta.v8i1.76Keywords:
bioavailability, bio accessibility, proteinAbstract
Bioavailability, bio accessibility and nutritional quality in particular of proteins are important variables to define the effectiveness and quality of a food or supplement for therapeutic use. Knowing the nutritional value of proteins allows protein supplementation in the formulation of low quality protein mixtures and improve the bioavailability and quality of protein. There are several methods for determining these protein parameters both in vitro and in vivo. In vitro methods include simulated digestion systems and the use of cell culture methods that simulate the gut-blood stream, which are widely used in food science, nutrition and the pharmaceutical industry, since they allow studying structural changes, digestibility and the release of food components under specific gastrointestinal conditions. The nutritional efficacy of food products can be ensured by determining the bioaccessibility of the food, a methodology that provides valuable information for selecting the appropriate doses and source of matrices. In vitro digestion tests simulate the physiological conditions in the body during in vivo digestion. Among the most relevant are ARES, IMGS, MGD, SGH, SIMGI, SMG and TIM.
Downloads
References
Alarcón F., Moyano J. & Diaz M. (2002). Evaluation of different protein sources for aqua feeds by an optimized pH-stat system. Journal Science Food Agriculture, 82, 697-704. DOI: https://doi.org/10.1002/jsfa.1100
Barallobre-Barreiro, Javier; Chung, Yuen-Li & Mayr, Manuel. (2013). La proteómica y la metabolómica: los mecanismos de la enfermedad cardiovascular y el descubrimiento de biomarcadores. Revista Española de Cardiología, 66 (8): 657-661. DOI: https://doi.org/10.1016/j.recesp.2013.04.010
Barros, L., Retamal, C., Torres, H., Zúñiga, R.N. & Troncoso, E. (2016). Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Research International, 90, 216–225. DOI: https://doi.org/10.1016/j.foodres.2016.10.049
Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T., 2015. Development of human colonic microbiota in the computer-controlled dynamic Simulator of the Gastro Intestinal tract SIMGI. LWT-Food Sci Technol ;61(2):283-9. DOI: https://doi.org/10.1016/j.lwt.2014.12.014
Boirie, Y., Dangin, M., Gachon, P., Vasson, M., Maubois, J. & Beaufrère, B. (1997). Slow and fast proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences, 94, 14930-14935. DOI: https://doi.org/10.1073/pnas.94.26.14930
Castrillo, C., Hervera, M. & Baucells, M., (2009). Methods for predicting the energy value of pet foods. Revista Brasileira de Zootecnia, 38, 1-14. DOI: https://doi.org/10.1590/S1516-35982009001300001
Coles, L.T., Moughan, P.J. & Awati, A. (2011). Influence of assay conditions on the in vitro hindgut digestibility of dry matter. Food chemistry, 125(4), 1351-1358. DOI: https://doi.org/10.1016/j.foodchem.2010.10.004
Dierick, N., Vervaeke I., Decupeyre, I. &. Henderickx, H. (1985). Protein digestion in pigs measured in vivo and in vitro. Digestive Physiology in the Pig. Proc. 3rd International Seminar on Digestive Physiology in the Pig. (Ed. A. Just , H. Jorgensen and J.A. Fernández). National Institute of Animal Science. Copenhagen. p. 329
Dierick, N., Vervaeke I., Decupeyre, I. &. Henderickx, H., (1985). Protein digestion in pigs measured in vivo and in vitro. Digestive Physiology in the Pig. Proc. 3rd International Seminar on Digestive Physiology in the Pig. (Ed. A. Just , H. Jorgensen and J.A. Fernández). National Institute of Animal Science. Copenhagen. p. 329
FAO. Evaluación de las proteínas alimentarias en la nutrición humana: Informe de una consulta de expertos de la FAO de 2011; Documento 92 de la FAO sobre alimentación y nutrición; FAO: Roma, Italia, 2013.
Fuller, M. & Tomé, D. (2005). In vivo determination of amino acid bioavailability in humans and model animals. Journal of AOAC International, 88, 923-934. DOI: https://doi.org/10.1093/jaoac/88.3.923
Furuya, S., Sakamoto, K. & Takashi, S. (1979). A new in vitro method for the estimation of digestibility using intestinal fluid of the pig. British Journal of Nutrition, 41: 511. DOI: https://doi.org/10.1079/BJN19790066
Gaudichon, C., Bos, C., Morens, C., Petzke, K., Mariotti, F., Everwand, J., Benamouzig, R., Daré, S., Tomé, D., & Metges, C. (2002). Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements. Gastroenterology, 123, 50-9. DOI: https://doi.org/10.1053/gast.2002.34233
Gil A. (ed.): Tratado de nutrición. Tomo 1. Bases fisiológicas y bioquímicas de la nutrición. Acción Médica. Madrid, 2005.
González, L., Tellez, A., Sampedro, J. & Nájera, H. (2007). Las proteínas en la nutrición. Respyn, 8 (2), 1-7.
Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S. & Alric, M., (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30(11), 591-600. DOI: https://doi.org/10.1016/j.tibtech.2012.08.001
Hervera, M., Baucells, M.D., & Blanch, F. (2007). Prediction of digestible energy content of extruded dog food by in vitro analyses. Journal of animal physiology and animal nutrition, 91(5), 205-209, DOI: https://doi.org/10.1111/j.1439-0396.2007.00693.x
Hur, S., Lim, B., Decker, E. & Mcclements. (2011). In vitro human digestión models for food applications. Food Chemistry, 125(1), 1-12. DOI: https://doi.org/10.1016/j.foodchem.2010.08.036
Kong, F., & Singh., R. (2010). A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 75(9): 627–635. DOI: https://doi.org/10.1111/j.1750-3841.2010.01856.x
Lowgren, W., Graham, H., Aman, P. & Raj, S. (1988). In vitro prediction of the nutritive value of pig feeds. Digestive Physiology in the Pig. Proc. 4th International Seminar : Polish Academy of Sciences. Institute of Animal Physiology and Nutrition. Jablona, Poland. p. 262
Mariotti, F., Mahé, S., Benamouzig, R., Luengo, C., Daré, S., Gaudichon, C., & Tomé, D. (1999). Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans, The Journal of Nutrition, 129, 1992–1997. DOI: https://doi.org/10.1093/jn/129.11.1992
Martínez, O. & Martínez, E. (2006). Proteínas y péptidos en nutrición enteral. Nutrición hospitalaria, 21(2), 1-14.
Minekus M., Marteau P., Havenaar R. & Huis in’t Veld J., (1995). “A multi compartmental dynamic computer-controlled model simulating the stomach and small intestine.” ATLA, Zeist, The Netherlands, 23:197-209. DOI: https://doi.org/10.1177/026119299502300205
Moughan, P. (2003). Amino acid availability: Aspects of chemical analysis and bioassay methodology. Nutrition Research Reviews, 16(2), 127-141. DOI: https://doi.org/10.1079/NRR200365
Moughan, P., Smith, W. & James, K. (1984). Preliminary observations on the use of the rat as a model for the pig in the determination of apparent digestibility of dietary protein. New Zealand journal of agricultural research, 27, 509-512.. DOI: https://doi.org/10.1080/00288233.1984.10418012
Moughan, R. & Nimmo, M. (1984). The influence of variations in muscle fibre composition on muscle strength and cross-sectional area in untrained males. DOI: https://doi.org/10.1113/jphysiol.1984.sp015246
Ramón, D., (2016). Nuevas estrategias en la evaluación de alimentos funcionales (Web: http://www.sebbm.es/revista/articulo.php?id=295&url=nuevas-estrategias-en-la evaluacion-de-alimentos-funcionales#sthash.Gs7WoxIF.dpuf)
Savoie, L. (1991). In vitro simulation of protein digestion: An integrated approach. En: In vitro digestion for pigs and poultry. (Ed. M.F. Fuller). Commonwealth Agricultural Bureau International. Slough. p. 135
Schaafsma G. (2000). The protein digestibility-corrected amino acid score. Journal of Nutrition. 130(7).1865S-7S. DOI: https://doi.org/10.1093/jn/130.7.1865S
Schulze, K. (2006). Imágenes y modelado de la digestión en el estómago y el duodeno. Neurogastroenterología y motilidad, 18, 172 - 183. DOI: https://doi.org/10.1111/j.1365-2982.2006.00759.x
Stein, H. & Bohlke, A. (2007). The effects of thermal treatment of field peas (Pisum sativum L.) on nutrient and energy digestibility by growing pigs. Journal of animal science, 85, 23-30. DOI: https://doi.org/10.2527/jas.2006-712
Vardakou, M., Mercuri, A., Barker, S., Craig, D., Faulks, R. & Wickham, M. (2011). Lograr fuerzas de trituración antral en modelos in vitro biorelevantes: comparación del aparato de disolución II de la USP y el modelo gástrico dinámico con datos in vivo humanos. AAPS PharmSciTech, 12 ( 2), 620 – 626. DOI: https://doi.org/10.1208/s12249-011-9616-z
Verhoeckx, K., Cotter, P., López, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. & Wicher, H. (2015). The Impact of Food Bioactives on Health: in vitro and ex vivo models, Springer International Publishing, 92: 357– 66 DOI: https://doi.org/10.1007/978-3-319-16104-4
Viadel, B. 2016 [en línea] actualizado en 2016 Disponible en: https://www.ainia.es/tecnoalimentalia/tecnologia/nuevos-modelos-de-digestion-in vitro-para-el-desarrollo-de-alimentos-funcionales-y-farmacos/ [último acceso en 2022]
Villemejane, C., Wahl, R., Aymard, P., Denis, S., & Michon, C. (2015). In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): viscosity measurement and prediction. Food chemistry, 182, 55–63. DOI: https://doi.org/10.1016/j.foodchem.2015.02.125
Zhang Q, Abe T, Takahashi, T., & Sasahara, T. (1996). Variations in vitro starch digestion of glutinous rice flour. Journal of Agricultural and Food Chemistry, 44(9), 2672–2674. DOI: https://doi.org/10.1021/jf9508110
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S.A. Hernández-Esquivel, I. Martínez-Arellano, M.S. Córdova-Aguilar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
a. Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Atribución 4.0 Internacional. que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
b. Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
c. Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) posterior al proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado.