Aplicación de un Diseño de Experimentos Box-Behnken para la determinación de las condiciones de extracción de compuestos antioxidantes de Decatropis bicolor

Authors

  • E. Contreras Universidad Autónoma del Estado de Hidalgo
  • T. Hernández Universidad Autónoma del Estado de Hidalgo
  • J. Jaimez Universidad Autónoma del Estado de Hidalgo
  • J.G. Pérez Universidad Autónoma del Estado de Hidalgo
  • J.F. Gutiérrez Universidad Autónoma del Estado de Hidalgo
  • J. Ramírez Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.29105/idcyta.v8i1.87

Keywords:

Decatropis bicolor, extracción sólido-líquido, antioxidantes, Box-Behnken

Abstract

In Mexico, the state of Hidalgo has a wide variety of phanerogam plants used to treat certain types of health conditions, for example, Decatropis bicolor known as Aranthó. However, there is little information about its use as a source of antioxidant compounds. Therefore, the objective of this work was to determine the extraction conditions of antioxidants from Decatropis bicolor by applying the Box-Behnken design of experiments. The variables analyzed were: time (5, 15, and 25 minutes), temperature (20, 55, and 90°C), and sample concentration (2, 6, and 10%). The antioxidant activity was measured using the DPPH and FRAP techniques meanwhile, the total phenol content was quantified by the Folin-Ciocalteu method. The aqueous extracts presented values from 295 to 1511 mg ET/100g via DPPH radical. Regarding the antioxidant activity via redox reactions, values of 138 to 691 mg EFe2+/100g were found. In all the aqueous extracts of D. bicolor, the presence of phenolic compounds was observed in variable concentrations, from 739 to 2232 mg EAG/100g. The temperature was the determining factor in the extraction, regardless of the time and the amount of Aranthó used.

Downloads

Download data is not yet available.

References

Benzie, I.F.F.; Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 239, 70–76. DOI: https://doi.org/10.1006/abio.1996.0292

Box, G. E. P., Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455-475. DOI: https://doi.org/10.1080/00401706.1960.10489912

Brand-Williams, W.; Cuvelier, M.E.; Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT, 28, 25–30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Cárdenas, O. N. C., Pérez, G. C., Zavala, S. M. A., Hernández, R. A. B., Pérez, S. G., (2007). Actividad antifúngica de seis plantas sobre Aspergillus flavus Link. Revista Mexicana de Ciencias Farmacéuticas, 36(3), 21-26.

Chohan, M.; Forster-Wilkins, G.; Opara, E. (2008). Determination of the Antioxidant Capacity of Culinary Herbs Subjected to Various Cooking and Storage Processes Using the ABTS*+ Radical Cation Assay. Plant Foods Hum. Nutr., 63, 47–52. DOI: https://doi.org/10.1007/s11130-007-0068-2

CONABIO. (2016). Especies, México: CONABIO. http://bios.conabio.gob.mx/especies/6035108.

Cortés, C. J. (2005). Actividad biológica de extractos de plantas usadas para el tratamiento del cáncer e infecciones en Tepatepec, Hidalgo (Tesis de licenciatura). Universidad Autónoma del Estado de Hidalgo. México.

Estanislao, G. C. C., Aquino, C. A., Pérez, I D. G., San Martín, M. E., Morales, L. J. (2016). Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. BMC Complementary and Alternative Medicine, 16(266), 1-11. DOI: https://doi.org/10.1186/s12906-016-1136-7

García A. A., González, L. N., Márquez, C., Martínez, V. M. (2003). Cumarinas presentes en especies del género Casimiroa. Revista de la Sociedad Química de México, 47(2), 151-154

García, A. A., Ramírez, A, T., Parra, D. H., Velázquez, G., Martínez, V. M. (2000). Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Medica, 66(3), 279-281. DOI: https://doi.org/10.1055/s-2000-14894

Kovač, T., Kovač, M., Strelec, I., Nevistić, A., Molna, M. (2017). Antifungal and antiaflatoxigenic activities of coumarinyl thiosemicarbazides against Aspergillus flavus NRRL 3251. Archives of Industrial Hygiene and Toxicology, 68, 9-15. DOI: https://doi.org/10.1515/aiht-2017-68-2883

Li, S., Li, S., Gan, R., Song, F., Kuang, L., Li, H. (2013). Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Industrial Crops and Products, 51, 289-298. DOI: https://doi.org/10.1016/j.indcrop.2013.09.017

Nikolic, M., Glamoclija, J., Ferreira, I., Caldhelha, R., Fernandez, A., Markovic, T., Markovic, D., Giweli, A., Sokovic, M. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss and Reut and Thymus vulgaris L. essential oils. Indutrial Crops and Products, 52,183-190. DOI: https://doi.org/10.1016/j.indcrop.2013.10.006

Rajha, H. N., Darra, E. N., Hobaika, Z., Boussetta, N., Vorobiev, E., Mroun, R. G., Louka, N. (2014). Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape by products by response Surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food and Nutrition Sciences, 5, 397-409. DOI: https://doi.org/10.4236/fns.2014.54048

Ramírez, G. J., Jaime, O. J., Castañeda, O. A., Añorve, M. J., Salazar, P. M., González, O. G., Contreras, L. E. (2017). Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger (Zingiber officinale) Applying a Box-Behnken Design. Plant Foods for Human Nutrition. 71(3). DOI: https://doi.org/10.1007/s11130-016-0582-1

Ríos, Y. M., Ramírez, C. A., León, R. I., Estrada, S. S., Navarrete, V. G., Aguilar, G. B. (2011). Complete NMR assignment of 3, 4-seco-lup-20 (29)-en- 3-oic acid from Decatropis bicolor. Magnetic Resonance in Chemistry, 50, 329 – 331. DOI: https://doi.org/10.1002/mrc.2875

Sánchez, G. A., Álvarez, Z. E., Lopéz, M. L. (2016). Diversity and distribution patterns of ferns and lycophytes in a cloud forest in Mexico. Revista Chapingo, 22(3), 234-253.

Skotti, E., Anastasaki, E., Kanellou, G., Polissiou, M., Tarantilis, P. A. (2013). Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected greek medicinal and aromatic plants. Industrial Crops and Products, 53, 46-54. DOI: https://doi.org/10.1016/j.indcrop.2013.12.013

Villavicencio, M. A. (1990). Actividad antimicrobiana de Decatropis bicolor. En: Tiempo nuestro, investigación científica y tecnológica. Universidad Autónoma del Estado de Hidalgo, México, 139-147.

Villavicencio, M. A., Pérez, E. B. E. (2002). Plantas útiles del Estado de Hidalgo. Tomo II. Pachuca, Hgo., México: UAEH.

Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. (2017).

Ultrasound- assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem., 217, 552–559 DOI: https://doi.org/10.1016/j.foodchem.2016.09.013

Published

2023-07-17

How to Cite

Contreras, E. ., Hernández, T. ., Jaimez, J. ., Pérez, J. ., Gutiérrez, J. ., & Ramírez, J. . (2023). Aplicación de un Diseño de Experimentos Box-Behnken para la determinación de las condiciones de extracción de compuestos antioxidantes de Decatropis bicolor. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 667–675. https://doi.org/10.29105/idcyta.v8i1.87