Efecto de los pretratamientos físico, químico y biológico, en la hidrólisis enzimática de la cáscara de piña (Ananas comosus)

Authors

  • M.R. González-González Tecnológico Nacional de México https://orcid.org/0000-0002-6458-6739
  • R. Miranda-López Tecnológico Nacional de México
  • J.E. Botello-Alvarez Tecnológico Nacional de México

DOI:

https://doi.org/10.29105/idcyta.v8i1.97

Keywords:

Enzymatic hydrolysis, Ananas comosus, glycosyl hydrolases, total phenols, peel, pineapple

Abstract

The pineapple occupies the third place of cultivated tropical fruits in the world. The peel corresponds to at least 25% of the total weight of the fruit and has important biological activity as an antioxidant. At present it has been used in the production of biofuels, however, it is sought that through the action of glycosyl hydrolases (GH) the release of phenolic compounds is promoted, for this the pretreatments play an important role to promote the availability of the substrate to the enzyme. The physical (mechanical) treatment reduces the particle size, exerting favorable effects on the production of glucose and phenolic compounds. In the case described here, chemical treatment whit CH3COOH and NaHCO3 do not produce significant changes, even reducing the progress of hydrolysis. Finally, the biological treatment with xylanases caused hemicellulose degradation, reducing the cellulase barrier and increasing glucose production. Optimal reaction conditions for GH were identified. To determine the progress of hydrolysis, glucose concentration (mg/dL) and total phenolic content (mg GAE/g sample) were measured.

Downloads

Download data is not yet available.

References

Agrawal, R., Verma, A., Singhania, R. R., Varjani, S., Di Dong, C., & Kumar Patel, A. (2021). Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresource Technology, 332(February), 125042. https://doi.org/10.1016/j.biortech.2021.125042 DOI: https://doi.org/10.1016/j.biortech.2021.125042

Ahmed, F., Yan, Z., & Bao, J. (2019). Dry biodetoxification of acid pretreated wheat straw for cellulosic ethanol fermentation. Bioresources and Bioprocessing, 6(1). https://doi.org/10.1186/s40643-019-0260-x DOI: https://doi.org/10.1186/s40643-019-0260-x

Antov, M. G., & Đorđević, T. R. (2017). Environmental-friendly technologies for the production of antioxidant xylooligosaccharides from wheat chaff. Food Chemistry, 235, 175–180. https://doi.org/10.1016/j.foodchem.2017.05.058 DOI: https://doi.org/10.1016/j.foodchem.2017.05.058

AOAC International. (1995). Official methods of analysis of AOAC International. Arlington, Va: AOAC International.

Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Trends in Food Science & Technology Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science & Technology, 82(March), 60–70. https://doi.org/10.1016/j.tifs.2018.09.024 DOI: https://doi.org/10.1016/j.tifs.2018.09.024

Da Silva, L. M. R., De Figueiredo, E. A. T., Ricardo, N. M. P. S., Vieira, I. G. P., De Figueiredo, R. W., Brasil, I. M., & Gomes, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. https://doi.org/10.1016/j.foodchem.2013.08.001 DOI: https://doi.org/10.1016/j.foodchem.2013.08.001

Food and Agriculture Organization of the United Nations. (2020). FAOSTAT statistical database. [Consultado:2022] :FAO.

González-Aguilar, G. A., Blancas-Benítez, F. J., & Sáyago-Ayerdi, S. G. (2017). Polyphenols associated with dietary fibers in plant foods: molecular interactions and bioaccessibility. Current Opinion in Food Science, 13, 84–88. https://doi.org/10.1016/j.cofs.2017.03.004 DOI: https://doi.org/10.1016/j.cofs.2017.03.004

Hu, H., Zhao, Q., Xie, J., & Sun, D. (2019). Polysaccharides from pineapple pomace: new insight into ultrasonic-cellulase synergistic extraction and hypoglycemic activities. International Journal of Biological Macromolecules, 121, 1213–1226. https://doi.org/10.1016/j.ijbiomac.2018.10.054 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.054

Huang, C., He, J., Li, X., Min, D., & Yong, Q. (2015). Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes. Bioresource Technology, 192, 471–477. https://doi.org/10.1016/j.biortech.2015.06.008 DOI: https://doi.org/10.1016/j.biortech.2015.06.008

Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., & Yong, Q. (2019). A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnology for Biofuels, 12(1), 1–13. https://doi.org/10.1186/s13068-019-1527-3 DOI: https://doi.org/10.1186/s13068-019-1527-3

Kafle, K., Shin, H., Lee, C. M., Park, S., & Kim, S. H. (2015). Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis. Scientific Reports, 5(October), 1–10. https://doi.org/10.1038/srep15102 DOI: https://doi.org/10.1038/srep15102

Moreda-Piñeiro, J., Sánchez-Piñero, J., Mañana-López, A., Turnes-Carou, I., Alonso-Rodríguez, E., López-Mahía, P., & Muniategui-Lorenzo, S. (2018). Multi-element determinations in foods from Amazon region by ICP-MS after enzymatic hydrolysis assisted by pressurisation and microwave energy. Microchemical Journal, 137, 402–409. https://doi.org/10.1016/j.microc.2017.11.018 DOI: https://doi.org/10.1016/j.microc.2017.11.018

Pocan, P., Bahcegul, E., Oztop, M. H., & Hamamci, H. (2018). Enzymatic Hydrolysis of Fruit Peels and Other Lignocellulosic Biomass as a Source of Sugar. Waste and Biomass Valorization, 9(6), 929–937. https://doi.org/10.1007/s12649-017-9875-3 DOI: https://doi.org/10.1007/s12649-017-9875-3

Ponnusamy, V. K., Nguyen, D. D., Dharmaraja, J., Shobana, S., Banu, J. R., Saratale, R. G., Chang, S. W., & Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 271, 462–472. https://doi.org/10.1016/j.biortech.2018.09.070 DOI: https://doi.org/10.1016/j.biortech.2018.09.070

Seguí, L., & Fito Maupoey, P. (2018). An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. Journal of Cleaner Production, 172, 1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284 DOI: https://doi.org/10.1016/j.jclepro.2017.10.284

Wojtusik, M. (2019). Hidrólisis enzimática de materiales lignocelulósicos.

Yao, L., Yoo, C. G., Meng, X., Li, M., Pu, Y., Ragauskas, A. J., & Yang, H. (2018). A structured understanding of cellobiohydrolase i binding to poplar lignin fractions after dilute acid pretreatment. Biotechnology for Biofuels, 11(1), 1–11. https://doi.org/10.1186/s13068-018-1087-y DOI: https://doi.org/10.1186/s13068-018-1087-y

Zhang, X., Li, Y., & Hou, Y. (2019). Preparation of magnetic polyethylenimine lignin and its adsorption of Pb(II). International Journal of Biological Macromolecules, 141, 1102–1110. https://doi.org/10.1016/j.ijbiomac.2019.09.061 DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.061

Zoghlami, A., & Paës, G. (2019). Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 7(December). https://doi.org/10.3389/fchem.2019.00874 DOI: https://doi.org/10.3389/fchem.2019.00874

Published

2023-07-17

How to Cite

González-González, M. ., Miranda-López, R. ., & Botello-Alvarez, J. . (2023). Efecto de los pretratamientos físico, químico y biológico, en la hidrólisis enzimática de la cáscara de piña (Ananas comosus). Revista Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 8(1), 750–758. https://doi.org/10.29105/idcyta.v8i1.97