Efecto de la adición de proteína de garbanzo sobre las propiedades fisicoquímicas del yogur bajo en grasa

Autores/as

DOI:

https://doi.org/10.29105/idcyta.v9i1.128

Palabras clave:

Viscosidad, acidez, sensorial, aceptabilidad, garbanzo, yogurt

Resumen

En este trabajo, se evaluó el efecto de la concentración de proteína de garbanzo y el tiempo de fermentación sobre las propiedades del yogur bajo en grasa y se comparó con dos controles, completa en grasa(CG) y grasa reducida (RG). Los resultados muestran que la concentración de proteína de garbanzo afectó la capacidad de retención de agua del yogur pero no tuvo efecto significativo sobre los valores de acidez; sin embargo, el tratamiento que presentó mejor Capacidad de Retención de Agua (CRA) fue Y0.5CP8h con 97.47 %. Por otro lado, el tiempo de fermentación afectó la acidez de los yogures, siendo el tiempo de fermentación de 8 h el que afectó la acidez. Ambos parámetros, concentración de proteína y tiempo de fermentación, mostraron efectos significativos sobre la viscosidad del yogur, pero el factor que tuvo mayor efecto sobre la viscosidad fue la concentración de proteína, aunque el tratamiento que presentó el mayor valor de viscosidad inicial fue Y0.5CP8h.  Los resultados de las propiedades sensoriales demostraron que no hubo diferencias significativas en la aceptabilidad general de los diferentes tratamientos de yogur. Estos resultados demostraron que la proteína de garbanzo es una alternativa potencial como fuente para producir alimentos lácteos funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005; ISBN 0-935584-77-3.

Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2019). Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Science and Technology, 93, 53-68. DOI: https://doi.org/10.1016/j.tifs.2019.08.022

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999

Brückner-Gühmann, M., Benthin, A., & Drusch, S. (2019). Enrichment of yogurt with oat protein fractions: Structure formation, textural properties and sensory evaluation. Food Hydrocolloids, 86, 146-153. DOI: https://doi.org/10.1016/j.foodhyd.2018.03.019

Canon, F., Maillard, M. B., Famelart, M. H., Thierry, A., & Gagnaire, V. (2022). Mixed dairy and plant-based yogurt alternatives: Improving the physical and sensorial properties through formulation and lactic acidic bacteria cocultures. Current Research in Food Science, 5, 665-676. DOI: https://doi.org/10.1016/j.crfs.2022.03.011

Dabija, A., Codina, G., Anca, G., Sanduleac, E., & Lacramioara, R. (2018). Effects of some vegetable proteins addition on yogurt quality. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 19, 181-192.

Day, L., Cakebread, J. A., & Loveday, S. M. (2022). Trends for animals and plants. Differences in the nutritional and functional properties. Trends in Food Science and Technology, 119, 420-442. https://doi.org/10.1016/j.tifs.2021.12.020 DOI: https://doi.org/10.1016/j.tifs.2021.12.020

de Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Intenational Dairy Journal, 11(9), 687-707. DOI: https://doi.org/10.1016/S0958-6946(01)00114-5

Duboc, P., & Mollet, B. (2001). Applications of exopolysaccharides in the dairy industry. Intenational Dairy Journal, 11(9), 759-768. DOI: https://doi.org/10.1016/S0958-6946(01)00119-4

Gao, C., Gao, Z., Greenway, F. L., Burton, J. H., Johnson, W. D., & Keenan, M. J. (2015). Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutrition Research, 35, 834-843. DOI: https://doi.org/10.1016/j.nutres.2015.06.007

Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chemistry, 124(2), 422–431. https://doi.org/10.1016/j.foodchem.2010.06.078. DOI: https://doi.org/10.1016/j.foodchem.2010.06.078

Ghribi, A. M., Gafsi, I. M., Blecker, C., Danthine, S., Attia, H., & Besbes, S. (2015). Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. Journal of Food Engineering, 165, 179–188. DOI: https://doi.org/10.1016/j.jfoodeng.2015.06.021

Goldstein, N., & Reifen, R. (2022). The potential of legume-derived proteins in the food industry. Grain and Oil Science and Technology, 5, 167-178. http://dx.doi.org/10.1016/j.gaost.2022.06.002. DOI: https://doi.org/10.1016/j.gaost.2022.06.002

Jones, O. G., & Mcclements, D. J. (2011). Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein – polysaccharide complexes. Advances in Colloid and Interface Science, 167(1–2), 49–62. https://doi. org/10.1016/j.cis.2010.10.006. DOI: https://doi.org/10.1016/j.cis.2010.10.006

Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., & Mahapatra, A. (2021). Advances in the plant protein extraction: Mechanism and recommendation. Food Hydrocolloids, 115, 106595. https://doi.org/10.1016/J.foodhyd.2021.106595. DOI: https://doi.org/10.1016/j.foodhyd.2021.106595

Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., & Romero, A. (2016). Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties. Food Biophysics, 11(1), 43–51. https://doi.org/10.1007/s11483-015-9411-6. DOI: https://doi.org/10.1007/s11483-015-9411-6

Lamarche, B. (2021). Dairy foods and the risk of type 2 diabetes: getting the fats straight. American Journal of Clinical Nutrition, 113, 495-496. https://doi.org/10.1093/ajcn/nqaa376. DOI: https://doi.org/10.1093/ajcn/nqaa376

Levy, R., Okun, S., Davidovich-Pinhas, M., & Shpigelman, A. (2021). Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocolloids, 113, 1-12. DOI: https://doi.org/10.1016/j.foodhyd.2020.106442

Li, H., Zhang, L., Jia, Y., Yuan, Y., Li, H., Cui, W., & Yu, J. (2022). Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: applicability of vegetable oils as the oil phase. Journal of Dairy Science, 105, 9404-9416. https://doi.org/10.3168/jds.2022-22314. DOI: https://doi.org/10.3168/jds.2022-22314

Liang, H. N., & Tang, C. H. (2013). pH-dependent emulsifying properties of pea [Pisum sativum (L.)] Proteins. Food Hydrocolloids, 33, 309–319. DOI: https://doi.org/10.1016/j.foodhyd.2013.04.005

Madadlou, A., Floury, J., & Dupont, D. (2018). Structural assessment and catalytic oxidation activity of hydrophobized whey proteins. Journal of Agricultural and Food Chemistry, 66 (45), 12025–12033. https://doi.org/10.1021/acs.jafc.8b02362. DOI: https://doi.org/10.1021/acs.jafc.8b02362

Meilgaard, M., Civille, G. V., & Carr, B. T. (1999). Sensory evaluation techniques (3rd ed.). Boca Raton: CRC Press. DOI: https://doi.org/10.1201/9781003040729

Mesfin, N., Belay, A., & Amare, E. (2021). Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder. Heliyon, 7, 1-8. DOI: https://doi.org/10.1016/j.heliyon.2021.e08081

Moser, P., Nicoletti, V.R., Drusch, S., & Brückner-Gühmann, M. (2020). Functional properties of chickpea protein-pectin interfacial complex im buriti oil emulsion and spray dried microcapsules. Food Hydrocolloids, 107, 105929. DOI: https://doi.org/10.1016/j.foodhyd.2020.105929

Mudgil, P., Jumah, B., Ahmad, M., Hamed, F., & Maqsood, S. (2018). Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT–Food Science and Technology, 98, 646–653. DOI: https://doi.org/10.1016/j.lwt.2018.09.008

Purwandary, U., Shah, N. P., & Vasijevic, T. (2007). Effect of exopolysaccharide-producing strains of Strptococcus thermofilus on technological and rheological properties of set type yogurts. International Dairy Journals, 17(11), 1344-1352. DOI: https://doi.org/10.1016/j.idairyj.2007.01.018

Ribes, S., Peña, N., Fuentes, A., Talens, P., & Barat, J. M. (2020). Chía (Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: effect on their nutritional, technological and sensory properties. Journal of Dairy Science, 104, 2822-2833. https://doi.org/10.3168/jds.2020-19240. DOI: https://doi.org/10.3168/jds.2020-19240

Santiago-García, P. A., Mellado-Mojica, E., León-Martínez, F. M., Dzul-Cauich, J. G., López, M. G., & García-Vieyra, M. I. (2021). Fructans (agavins) from Agave angustifolia and Agave potatorum as fat replacement in yogurt: Effects on physicochemical, rheological, and sensory properties. LWT-Food Science and Technology, 140, 110846. https://doi.org/10.1016/j.lwt.2020.110846. DOI: https://doi.org/10.1016/j.lwt.2020.110846

Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: secondary structure, functionality and applications. Journal of Food Science and Technology, 56, 2787-2798. DOI: https://doi.org/10.1007/s13197-019-03723-8

Sofi, S. A., Singh, J., Chhikara, N., & Panghal, A. (2020). Effect of incorporation of germinated flour and protein isolate from chickpea on different quality characteristics of rice-based noodle. Cereal Chemistry, 97(1), 85–94. DOI: https://doi.org/10.1002/cche.10192

Soukoulis, C., Panagiotidis, P., Koureli, R., & Tzia, C. (2007). Industrial yogurt manufacture: Monitoring of fermentation process and improvement of final product quality. Journal Dairy Science, 90, 2641-2654. DOI: https://doi.org/10.3168/jds.2006-802

Varedesara, M. S., Ariaii, P., & Hesari, J. (2021). The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science and Nutrition, 9, 2180-2190. DOI: https://doi.org/10.1002/fsn3.2188

Venkidasamy, B., Selvaraj, D., Nile, A. S., Ramalingam, S., Kai, G., & Nile, S. H. (2019). Indian pulses: a review on nutritional, functional and biochemical properties with future perspective. Trends in Food Science and Technology, 88, 228-242. DOI: https://doi.org/10.1016/j.tifs.2019.03.012

Zhao, L., Feng, R., Ren, F., & Mao, X. (2018). Addition of buttermilk improves the flavor and volatile compound profile of low-fat yogurt. Lebensmittel Wissenschaft und Technologie, 98, 9-17. https://doi.org/10.1016/j.lwt.2018.08.029. DOI: https://doi.org/10.1016/j.lwt.2018.08.029

Descargas

Publicado

2024-03-19

Cómo citar

Dzul Cauich, J. G., Malagón Ruiz, O., Herrera Méndez, C. H., & García Vieyra, M. I. . (2024). Efecto de la adición de proteína de garbanzo sobre las propiedades fisicoquímicas del yogur bajo en grasa. Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 9(1), 53–66. https://doi.org/10.29105/idcyta.v9i1.128