A Perspective of the Applications of Macroalgae in Agriculture and Food

Macroalgae in Agriculture and Food

Authors

DOI:

https://doi.org/10.29105/idcyta.v10i1.131

Keywords:

Macroalgae, Feeding, Chlorophyta, Nutritional composition, NGS, Phaeophyta, Rhodophyta, Spirulina, Ulva

Abstract

This review article focuses on the study of macroalgae, and their use in agriculture and food from a bioinformatics point of view. The article begins with macroalgae, which are photosynthetic organisms that thrive in aquatic environments, and how they are used as a source of nutrients. Here, their different applications in agriculture, animal, and human nutrition are highlighted, emphasizing their capacity to be a source of vegetable and sustainable proteins. Macroalgae (brown algae, red algae, and green algae) were described and catalogued according to color, nutritional composition, and bioactive compounds. Some examples of algae species of each type were named, such as green algae (Ulva, Codium, and Chaetomorpha) and brown algae (Fucus, Laminaria, Sargassum). The life cycle and reproduction of macroalgae and some bioinformatics techniques used to analyze these algae are also mentioned. Forty articles were reviewed from Elseiver, Springer, PubMed, and Google Scholar. Forty articles from the Elseiver, Springer, PubMed, and Google Scholar databases were reviewed with a search cutoff from 2006 to May 2024. 

Downloads

Download data is not yet available.

References

Adarshan, S., Sree, V. S. S., Muthuramalingam, P., Nambiar, K. S., Sevanan, M., Satish, L., Venkidasamy, B., Jeelani, P. G., & Shin, H. (2023). Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. Plants 2024, Vol. 13, Page 113, 13(1), 113. https://doi.org/10.3390/PLANTS13010113 DOI: https://doi.org/10.3390/plants13010113

Al-Saman, M., … S. F.-I. J. of, & 2015, undefined. (2015). Effects of some red Algae on antioxidant and phytochemical contents of Maize (Zea mays L.) plants. Staff.Usc.Edu.EgMA Al-Saman, SA Farfour, RA HamoudaInternational Journal of Agriculture Sciences, 2015•staff.Usc.Edu.Eg, 5(2), 393–398. https://www.staff.usc.edu.eg/uploads/8a002660c432b63c2266f572a8e95b8b.pdf

André, R., Pacheco, R., Alves, A. C., Santos, H. M., Bourbon, M., & Serralheiro, M. L. (2023). The Hypocholesterolemic Potential of the Edible Algae Fucus vesiculosus: Proteomic and Quantitative PCR Analysis. Foods (Basel, Switzerland), 12(14). https://doi.org/10.3390/FOODS12142758 DOI: https://doi.org/10.3390/foods12142758

Arunkumar, M., Mahalakshmi, M., Ashokkumar, V., Aravind, M. K., Gunaseelan, S., Mohankumar, V., Ashokkumar, B., & Varalakshmi, P. (2022). Evaluation of seaweed sulfated polysaccharides as natural antagonists targeting Salmonella typhi OmpF: molecular docking and pharmacokinetic profiling. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1–11. https://doi.org/10.1186/S43088-021-00192-X/TABLES/2 DOI: https://doi.org/10.1186/s43088-021-00192-x

Bañeras, S. B. (2014). Análisis del sector de producción de algas con fines alimentarios. Percepción del consumidor frente al consumo de algas. https://upcommons.upc.edu/handle/2099.1/22271

Baweja, P., Kumar, S., Sahoo, D., & Levine, I. (2016). Biology of Seaweeds. Seaweed in Health and Disease Prevention, 41–106. https://doi.org/10.1016/B978-0-12-802772-1.00003-8 DOI: https://doi.org/10.1016/B978-0-12-802772-1.00003-8

Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Socaci, S. A., & Farcas, A. C. (2020). Macroalgae—A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients, 12(10), 1–23. https://doi.org/10.3390/NU12103085 DOI: https://doi.org/10.3390/nu12103085

Blunden, G., Morse, P. F., Mathe, I., Hohmann, J., Critchley, A. T., & Morrell, S. (2010). Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Natural Product Communications, 5(4), 581–585. https://doi.org/10.1177/1934578X1000500418 DOI: https://doi.org/10.1177/1934578X1000500418

Camurati, J. R., Hocsman, J., & Salomone, V. N. (2019). Potentialities of Argentine marine macroalgae. Marine and Fishery Sciences (MAFIS), 32(2), 169–183. https://doi.org/10.47193/MAFIS.3222019121907 DOI: https://doi.org/10.47193/mafis.3222019121907

Dawczynski, C., Schubert, R., chemistry, G. J.-F., & 2007, undefined. (1998). Amino acids, fatty acids, and dietary fibre in edible seaweed products. ElsevierC Dawczynski, R Schubert, G JahreisFood Chemistry, 2007•Elsevier. https://doi.org/10.1016/j.foodchem.2006.09.041 DOI: https://doi.org/10.1016/j.foodchem.2006.09.041

De, D., Marina, B., De, E., Actividad, L. A., & De, A. (2015). EVALUACIÓN DE LA ACTIVIDAD ANTIMICROBIANA DE Ulva lactuca. https://biblio.uabcs.mx/tesis/te3372.pdf

De Grado, T., Optar, P., Título De Magíster En, A. L., Maestría, B., & Biotecnología, E. N. (2023). La bioinformática como herramienta para el conocimiento de microorganismos edáficos con potencial para la producción agrícola sostenible, recuperación y. http://repository.unilibre.edu.co/handle/10901/28824

Déléris, P., Nazih, H., & Bard, J. M. (2016). Seaweeds in Human Health. Seaweed in Health and Disease Prevention, 319–367. https://doi.org/10.1016/B978-0-12-802772-1.00010-5 DOI: https://doi.org/10.1016/B978-0-12-802772-1.00010-5

Denis, C., Morançais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz-Collin, G., Barnathan, G., Jaouen, P., & Fleurence, J. (2010). Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chemistry, 119(3), 913–917. https://doi.org/10.1016/J.FOODCHEM.2009.07.047 DOI: https://doi.org/10.1016/j.foodchem.2009.07.047

Doctoral, T., Lucas, A. :, Directora, M., Alicia, D., Califano Co-Directora, N., Silvina, D., & Andrés, C. (2014). Alternativas tecnológicas para el desarrollo de productos cárnicos emulsionados saludables. https://doi.org/10.35537/10915/34958 DOI: https://doi.org/10.35537/10915/34958

Dominguez, H., & Loret, E. P. (2019). Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs 2019, Vol. 17, Page 357, 17(6), 357. https://doi.org/10.3390/MD17060357 DOI: https://doi.org/10.3390/md17060357

Dumay, J., & Morançais, M. (2016). Proteins and Pigments. Seaweed in Health and Disease Prevention, 275–318. https://doi.org/10.1016/B978-0-12-802772-1.00009-9 DOI: https://doi.org/10.1016/B978-0-12-802772-1.00009-9

Fort, A., Guiry, M. D., & Sulpice, R. (2018). Magnetic beads, a particularly effective novel method for extraction of NGS-ready DNA from macroalgae. Algal Research, 32, 308–313. https://doi.org/10.1016/J.ALGAL.2018.04.015 DOI: https://doi.org/10.1016/j.algal.2018.04.015

Gaspan, D., & Tolentino, M. (2023). Identificación y caracterización in silico de posibles alérgenos de algas rojas. Revista Abierta de Bioinformática y. https://www.biolscigroup.us/articles/OJBB-7-113.php

Gómez-Ordóñez, E., Jiménez-Escrig, A., & Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43(9), 2289–2294. https://doi.org/10.1016/J.FOODRES.2010.08.005 DOI: https://doi.org/10.1016/j.foodres.2010.08.005

Gupta, S., & Abu-Ghannam, N. (2011). Desarrollos recientes en la aplicación de algas o extractos de algas como medio para mejorar la seguridad y los atributos de calidad de los alimentos. Ciencia de Los Alimentos Innovadora y Emergente... https://www.sciencedirect.com/science/article/pii/S1466856411001007

Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., & Graham, M. H. (2012). EFfects Of Climate Change On Global Seaweed Communities. Journal of Phycology, 48(5), 1064–1078. https://doi.org/10.1111/J.1529-8817.2012.01224.X DOI: https://doi.org/10.1111/j.1529-8817.2012.01224.x

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/S10811-013-0078-4/FIGURES/4 DOI: https://doi.org/10.1007/s10811-013-0078-4

Hussein, Z. A. M., Loke, K. K., Abidin, R. A. Z., & Othman, R. (2011). EuDBase: An online resource for automated EST analysis pipeline (ESTFrontier) and database for red seaweed Eucheuma denticulatum. Bioinformation, 7(4), 157. https://doi.org/10.6026/97320630007157 DOI: https://doi.org/10.6026/97320630007157

Liuzzi, M. G., Gappa, J. L., & Piriz, M. L. (2011). Latitudinal gradients in macroalgal biodiversity in the Southwest Atlantic between 36 and 55°S. Hydrobiologia, 673(1), 205–214. https://doi.org/10.1007/S10750-011-0780-7 DOI: https://doi.org/10.1007/s10750-011-0780-7

Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. https://doi.org/10.1016/J.ANIFEEDSCI.2015.09.018 DOI: https://doi.org/10.1016/j.anifeedsci.2015.09.018

Mansilla, A., Oceanografía, K. A.-B. M. y, & 2013, undefined. (n.d.). CAPITULO 16. GENERALIDADES SOBRE LAS MACROALGAS. Recursosbiblio.Url.Edu.GtA Mansilla, K AlvealBiología Marina y Oceanografía, México, 2013•recursosbiblio.Url.Edu.Gt. Retrieved May 13, 2024, from http://recursosbiblio.url.edu.gt/Publi/Libros/2013/BioMarina/12.pdf

Manual de practicas de laboratorio biologia de algas - Google Académico. (n.d.). Retrieved May 28, 2024, from https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=Manual+de+practicas+de+laboratorio+biologia+de+algas&btnG=

Morais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering 2020, Vol. 8, Page 559, 8(8), 559. https://doi.org/10.3390/JMSE8080559 DOI: https://doi.org/10.3390/jmse8080559

Moreda-Piñeiro, J., Moreda-Piñeiro, A., & Romarís-Hortas, V. (2012). Metales traza en alimentos marinos: estimación de la biodisponibilidad y efecto de los principales componentes de los alimentos. Química de Los Alimentos. https://www.sciencedirect.com/science/article/pii/S0308814612003809

Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98–104. https://doi.org/10.1016/J.FOODCHEM.2005.07.027 DOI: https://doi.org/10.1016/j.foodchem.2005.07.027

Patwary, Z. P., Paul, N. A., Nishitsuji, K., Campbell, A. H., Shoguchi, E., Zhao, M., & Cummins, S. F. (2021). Application of omics research in seaweeds with a focus on red seaweeds. Briefings in Functional Genomics, 20(3), 148–161. https://doi.org/10.1093/BFGP/ELAB023 DOI: https://doi.org/10.1093/bfgp/elab023

Peña-Rodríguez, A., Mawhinney, T. P., Ricque-Marie, D., & Cruz-Suárez, L. E. (2011). Chemical composition of cultivated seaweed Ulva clathrata (Roth) C. Agardh. Food Chemistry, 129(2), 491–498. https://doi.org/10.1016/J.FOODCHEM.2011.04.104 DOI: https://doi.org/10.1016/j.foodchem.2011.04.104

Pérez, S., & Tvaroška, I. (2014). Carbohydrate-protein interactions: Molecular modeling insights. Advances in Carbohydrate Chemistry and Biochemistry, 71, 9–136. https://doi.org/10.1016/B978-0-12-800128-8.00001-7 DOI: https://doi.org/10.1016/B978-0-12-800128-8.00001-7

Peteiro, C., Cortés, B., … N. A.-C. O., & 2016, undefined. (n.d.). Creación de bancos de germoplasma o “semillas” con algas laminarias para su conservación, restauración ecológica y/o cultivo comercial. Digital.Csic.EsC Peteiro, B Cortés, NL Arroyo, M García-Tasende, A Vergés, B MartínezCentro Oceanográfico de Santander, 2016•digital.Csic.Es. Retrieved May 28, 2024, from https://digital.csic.es/bitstream/10261/314162/4/IPAC_Peteiro.pdf

Quitral R., V., Morales G., C., Sepúlveda L., M., & Schwartz M., M. (2012). Propiedades nutritivas y saludables de algas marinas y su potencialidad como ingrediente funcional. Revista Chilena de Nutrición, 39(4), 196–202. https://doi.org/10.4067/S0717-75182012000400014 DOI: https://doi.org/10.4067/S0717-75182012000400014

Ribamar Da Cruz, J., Júnior, F., & Ribamar Da Cruz, F. J. (2015). Desarrollo y aplicaciones del cultivo de" Saccharina latissima"(Laminariales, Ochrophyta) en sistemas de acuicultura multitrófica integrada (MTI). https://ruc.udc.es/dspace/handle/2183/15444

Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1), 465–490. https://doi.org/10.1007/S10811-013-0101-9/TABLES/3 DOI: https://doi.org/10.1007/s10811-013-0101-9

Uribe-Orozco, M., (Arica), L. M.-C.-I., & 2018, undefined. (n.d.). Efecto del alga marina Sargassum vulgare C. Agardh en suelo y el desarrollo de plantas de cilantro. SciELO Chile. Retrieved May 14, 2024, from https://www.scielo.cl/scielo.php?pid=S0718-34292018005001202&script=sci_arttext DOI: https://doi.org/10.4067/S0718-34292018005001202

Yesiltas, B., Gregersen, S., Lægsgaard, L., Brinch, M. L., Olsen, T. H., Marcatili, P., Overgaard, M. T., Hansen, E. B., Jacobsen, C., & García-Moreno, P. J. (2021). Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chemistry, 362, 130217. https://doi.org/10.1016/J.FOODCHEM.2021.130217. DOI: https://doi.org/10.1016/j.foodchem.2021.130217

Published

2025-02-10

How to Cite

García-Gómez , C., Cruz-Martínez , C., Cuellar-Olivares , D. A., Esparza-Montenegro , F. L., León-Félix , Ángel R., & Elizondo-Luevano, J. H. (2025). A Perspective of the Applications of Macroalgae in Agriculture and Food: Macroalgae in Agriculture and Food. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 10(1), 9–25. https://doi.org/10.29105/idcyta.v10i1.131