Potencial nutricional y bioactivo de frijol (Phaseolus vulgaris) en la salud humana

Authors

  • María Stephanie Cid-Gallegos Instituto Politécnico Nacional
  • Yolanda de las Mercedes Gómez y Gómez Instituto Politécnico Nacional
  • Luis Jorge Corzo-Ríos Corzo-Ríos Instituto Politécnico Nacional
  • Xariss M. Sanchez-Chino Colegio de la Frontera Sur
  • Deyanira Moguel-Concha Instituto Politécnico Nacional
  • Eduardo Borges-Martínez Instituto Politécnico Nacional
  • Cristian Jiménez-Martínez Instituto Politécnico Nacional https://orcid.org/0000-0001-8921-9858

DOI:

https://doi.org/10.29105/idcyta.v8i1.42

Keywords:

Beans, bioactive peptides, biological activity

Abstract

The bean is one of the most consumed legumes worldwide and belongs to the Leguminosae family. This legume is a low-cost source of protein, making it accessible to people in developing countries. It has great nutritional value, as well as secondary metabolites with biological activity on human health. Its main components are carbohydrates (50-60%), proteins (15-25%) and lipids (1-3%), as well as vitamins, minerals, and non-nutritional compounds such as phenolic compounds, saponins, tannins, among others present in the seed, which together with the bioactive peptides help in the control of diseases. On the other hand, the biological activities that have been reported for this set of compounds are antihypertensive, anti-inflammatory, anticancer, antifungal, among others. The research carried out shows that both proteins, peptides and secondary metabolites have biological activity that makes beans a food with a potential effect on health.

Downloads

Download data is not yet available.

References

Abdulrahman B.O., Bala M., Bello O.M. (2020) Bioactive Compounds of Black Bean (Phaseolus vulgaris L.). In: Bioactive Compounds in Underutilized Vegetables and Legumes. Murthy H.N., Paek K.Y. (eds) Reference Series in Phytochemistry. Springer, Cham.1-20 DOI: https://doi.org/10.1007/978-3-030-44578-2_38-1

Amarowicz, R. (2020). Legume Seeds as an Important Component of Human Diet. Foods (Basel, Switzerland), 9(12), 1812 DOI: https://doi.org/10.3390/foods9121812

Anderson, J. W., & Major, A. W. (2002). Pulses and lipaemia, short-and long-term effect: potential in the prevention of cardiovascular disease. British Journal of Nutrition, 88(S3), 263-271 DOI: https://doi.org/10.1079/BJN2002716

Ariza-Ortega, T. J., Zenón-Briones, E. Y., Castrejón-Flores, J. L., Yáñez-Fernández, J., Gómez-Gómez, Y. M., & Oliver-Salvador, M. C. (2014). Angiotensin-I-converting enzyme inhibitory, antimicrobial, and antioxidant effect of bioactive peptides obtained from different varieties of common beans (Phaseolus vulgaris L.) with in vivo antihypertensive activity in spontaneously hypertensive rats. European Food Research and Technology, 239(5), 785-794. DOI: https://doi.org/10.1007/s00217-014-2271-3

Boulter, D. (1977). Quality problems in" protein plants" with special attention paid to the proteins of legumes [leguminous grains and vegetables, cereals]. In Protein quality from leguminous crops, Dijon (France), 3 Nov 1976. Office for Official Publications of the European Communities.

Burbano, C., Muzquiz, M., Ayet, G., Cuadrado, C., & Pedrosa, M. M. (1999). Evaluation of antinutritional factors of selected varieties of Phaseolus vulgaris. Journal of the Science of Food and Agriculture, 79(11), 1468-1472. DOI: https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1468::AID-JSFA387>3.0.CO;2-G

Bruno-Barcena, J. M., & Azcarate-Peril, M. A. (2015). Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. Journal of functional foods, 12, 92-108. DOI: https://doi.org/10.1016/j.jff.2014.10.029

Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food research international, 43(2), 461-482. DOI: https://doi.org/10.1016/j.foodres.2009.09.004

Campos-Vega, R., Bassinello, P. Z., Santiago, R. D. A. C., & Oomah, B. D. (2018). Dry beans: Processing and nutritional effects. Therapeutic, probiotic, and unconventional foods, 367-386. DOI: https://doi.org/10.1016/B978-0-12-814625-5.00019-4

CEDRSSA (2020) Mercado del frijol, situación y prospectiva. http://www.cedrssa.gob.mx/files/b/13/53Mercado%20del%20frijol.pdf

Chagas, E. P., & Santoro, L. G. (1997). Globulin and albumin proteins in dehulled seeds of three Phaseolus vulgaris cultivars. Plant Foods for Human Nutrition, 51(1), 17-26. DOI: https://doi.org/10.1023/A:1007971329420

Chen, Y., Zhang, H., Liu, R., Mats, L., Zhu, H., Pauls, K. P., Deng, Z., & Tsao, R. (2019). Antioxidant and anti-inflammatory polyphenols and peptides of common bean (Phaseolus vulga L.) milk and yogurt in Caco-2 and HT-29 cell models. Journal of Functional Foods, 53, 125-135. DOI: https://doi.org/10.1016/j.jff.2018.12.013

Cid-Gallegos, M. S., Sánchez-Chino, X. M., Álvarez-González, I., Madrigal-Bujaidar, E., Vásquez-Garzón, V. R., Baltiérrez-Hoyos, R., Villa-Treviño, S., Dávila-Ortíz, G., & Jiménez-Martínez, C. (2020). Modification of in vitro and in vivo antioxidant activity by consumption of cooked chickpea in a colon cancer model. Nutrients, 12(9), 2572. DOI: https://doi.org/10.3390/nu12092572

Corzo-Ríos, L. J., Sánchez-Chino, X. M., Cardador-Martínez, A., Martínez-Herrera, J., & Jiménez-Martínez, C. (2020). Effect of cooking on nutritional and non-nutritional compounds in two species of Phaseolus (P. vulgaris and P. coccineus) cultivated in Mexico. International Journal of Gastronomy and Food Science, 20, 100206. DOI: https://doi.org/10.1016/j.ijgfs.2020.100206

Florez, A., Pujolà, M., Valero, J., Centelles, E., Almirall, A., & Casañas, F. (2009). Genetic and environmental effects on chemical composition related to sensory traits in common beans (Phaseolus vulgaris L.). Food Chemistry, 113(4), 950-956. DOI: https://doi.org/10.1016/j.foodchem.2008.08.036

Galdino Alves, N. E., González de Mejía, E., Mileib Vasconcelos, C., Zaczuk Bassinello, P., & Duarte Martino, H. S. (2016). Postharvest storage of carioca bean (Phaseolus vulgaris L.) did not impair inhibition of inflammation in lipopolysaccharide-induced human THP-1 macrophage-like cells. Journal Functional Foods, 23, 154-166. DOI: https://doi.org/10.1016/j.jff.2016.02.029

Garcia-Mora, P., Frias, J., Peñas, E., Zieliński, H., Giménez-Bastida, J. A., Wiczkowski, W., Zielińska, D., & Martínez-Villaluenga, C. (2015). Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal Functional Foods, 18, 319-332. DOI: https://doi.org/10.1016/j.jff.2015.07.010

Kan, L., Nie, S., Hu, J., Wang, S., Bai, Z., Wang, J., ... & Song, K. (2018). Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food chemistry, 260, 317-326. DOI: https://doi.org/10.1016/j.foodchem.2018.03.148

Koerner, J., Brunner, T., & Groettrup, M. (2017). Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget, 8(31), 50873. DOI: https://doi.org/10.18632/oncotarget.15141

Lampart-Szczapa (2001). Legume and oilseed proteins. Chemical and functional properties of food proteins, Zdzislaw E. Sikorski Eds. CRC Press, E.E.U.U. 2, 407-436.

López-Barrios, L., Antunes-Ricardo, M., & Gutiérrez-Uribe, J. A. (2016). Changes in antioxidant and antiinflammatory activity of black bean (Phaseolus vulgaris L.) protein isolates due to germination and enzymatic digestion. Food Chemistry, 203, 417-424. DOI: https://doi.org/10.1016/j.foodchem.2016.02.048

Luna Vital, D. A., González de Mejía, E., Dia, V. P., & Loarca-Piña, G. (2014). Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chemistry, 157, 347-355. DOI: https://doi.org/10.1016/j.foodchem.2014.02.050

Luna-Vital, D. A., González de Mejía, E., & Loarca-Piña, G. (2016). Selective mechanism of action of dietary peptides from common bean on HCT116 human colorectal cancer cells through loss of mitochondrial membrane potential and DNA damage. Journal Functional Foods, 23, 24-39. DOI: https://doi.org/10.1016/j.jff.2016.02.021

Luna-Vital, D. A., González-de Mejía, E., & Loarca-Piña, G. (2017). Dietary peptides from Phaseolus vulgaris L. reduced AOM/DSS-induced colitis-associated colon carcinogenesis in Balb/c mice. Plant Foods for Human Nutrition, 72(4), 445-447. DOI: https://doi.org/10.1007/s11130-017-0633-2

Mani-López, E., Palou, E., & López-Malo, A. (2021). Legume proteins, peptides, water extracts, and crude protein extracts as antifungals for food applications. Trends in Food Science & Technology, 112, 16-24 DOI: https://doi.org/10.1016/j.tifs.2021.03.035

Marquez, U. L., & Lajolo, F. M. (1981). Composition and digestibility of albumin, globulins, and glutelins from Phaseolus vulgaris. Journal of Agricultural and Food Chemistry, 29(5), 1068-1074. DOI: https://doi.org/10.1021/jf00107a043

Morry, J., Ngamcherdtrakul, W., & Yantasee, W. (2017). Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biology, 11, 240-253. DOI: https://doi.org/10.1016/j.redox.2016.12.011

Mullins, A. P., & Arjmandi, B. H. (2021). Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases. Nutrients, 13(2), 519. DOI: https://doi.org/10.3390/nu13020519

Nawrot, R., Barylski, J., Nowicki, G., Broniarczyk, J., Buchwald, W., & Goździcka-Józefiak, A. (2014). Plant antimicrobial peptides. Folia Microbiologica, 59(3), 181-196. DOI: https://doi.org/10.1007/s12223-013-0280-4

Nosworthy, M. G., Medina, G., Franczyk, A. J., Neufeld, J., Appah, P., Utioh, A.,Frohlich P. & House, J. D. (2018). Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia faba). Nutrients, 10(6), 671. DOI: https://doi.org/10.3390/nu10060671

Orona-Tamayo, D., Valverde, M. E., & Paredes-López, O. (2019). Bioactive peptides from selected latin american food crops - A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition, 59(12), 1949-1975. DOI: https://doi.org/10.1080/10408398.2018.1434480

Oseguera-Toledo, M. E., de Mejia, E. G., Dia, V. P., & Amaya-Llano, S. L. (2011). Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chemistry, 127(3), 1175-1185. DOI: https://doi.org/10.1016/j.foodchem.2011.01.121

Paredes López O. Guevara Lara F., et al., (2013). Los alimentos mágicos de las culturas indígenas mesoamericanas Volumen 197 de Ciencia para Todos. Fondo de Cultura Económica Mexico. 59-80

Pusztai, A., Bardocz, S., & Ewen, S. W. (2008). Uses of plant lectins in bioscience and biomedicine. Frontiers in Bioscience-Landmark, 13(3), 1130-1140. DOI: https://doi.org/10.2741/2750

Rivera del Rio, A., Boom, R. M., & Janssen, A. E. (2022). Effect of fractionation and processing conditions on the digestibility of plant proteins as food ingredients. Foods, 11(6), 870. DOI: https://doi.org/10.3390/foods11060870

Roy, M., Sarker, A., Azad, M. A. K., Shaheb, M. R., & Hoque, M. M. (2020). Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Journal of Food Measurement and Characterization, 14(1), 303-313. DOI: https://doi.org/10.1007/s11694-019-00292-4

Salas, C. E., Badillo-Corona, J. A., Ramírez-Sotelo, G., & Oliver-Salvador, C. (2015). Biologically active and antimicrobial peptides from plants. Biomed Research International, 2015, 102129-102129. DOI: https://doi.org/10.1155/2015/102129

Sathe, S. K. (2002). Dry bean protein functionality. Critical reviews in biotechnology, 22(2), 175-223. DOI: https://doi.org/10.1080/07388550290789487

Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1-16. DOI: https://doi.org/10.1016/j.foodres.2017.09.026

Swarnalakshmi, K., Yadav, V., Tyagi, D., Dhar, D. W., Kannepalli, A., & Kumar, S. (2020). Significance of plant growth promoting rhizobacteria in grain legumes: Growth promotion and crop production. Plants, 9(11), 1596. DOI: https://doi.org/10.3390/plants9111596

Vitale, A., & Bollini, R. (2017). Legume storage proteins. In Seed development and germination (pp. 73-102). Routledge Ed. New York E.E.U.U. DOI: https://doi.org/10.1201/9780203740071-4

Wang, Q., Huang, L., & Yue, J. (2017). Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochimica et Biophysica Acta - Molecular Cell Research, 1864(6), 957-967. DOI: https://doi.org/10.1016/j.bbamcr.2016.12.014

Wong, R. S. (2011). Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clininical Cancer Research, 30(1), 87. DOI: https://doi.org/10.1186/1756-9966-30-87

Xie, J., Ye, H., Du, M., Yu, Q., Chen,Y. & Shen, M. (2020). Mung bean protein hydrolysates protect mouse liver cell line Nctc-1469 cell from hydrogen peroxide-induced cell injury. Foods, 9, 14. DOI: https://doi.org/10.3390/foods9010014

Published

2023-07-17

How to Cite

Cid-Gallegos, M. S. ., Gómez y Gómez, Y. de las M. ., Corzo-Ríos, L. J. C.-R., Sanchez-Chino, X. M. ., Moguel-Concha, D. ., Borges-Martínez, E. ., & Jiménez-Martínez, C. (2023). Potencial nutricional y bioactivo de frijol (Phaseolus vulgaris) en la salud humana. Revista Investigación Y Desarrollo En Ciencia Y Tecnología De Alimentos, 8(1), 309–318. https://doi.org/10.29105/idcyta.v8i1.42